mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
249 lines
12 KiB
Markdown
249 lines
12 KiB
Markdown
# Speech Recognition
|
||
|
||
> **Note**:
|
||
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take the typic models as examples to demonstrate the usage.
|
||
|
||
## Inference
|
||
|
||
### Quick start
|
||
#### [Paraformer Model](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary)
|
||
```python
|
||
from modelscope.pipelines import pipeline
|
||
from modelscope.utils.constant import Tasks
|
||
|
||
inference_pipeline = pipeline(
|
||
task=Tasks.auto_speech_recognition,
|
||
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
|
||
)
|
||
|
||
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
|
||
print(rec_result)
|
||
```
|
||
#### [Paraformer-online Model](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online/summary)
|
||
```python
|
||
inference_pipeline = pipeline(
|
||
task=Tasks.auto_speech_recognition,
|
||
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online',
|
||
model_revision='v1.0.4'
|
||
)
|
||
import soundfile
|
||
speech, sample_rate = soundfile.read("example/asr_example.wav")
|
||
|
||
chunk_size = [5, 10, 5] #[5, 10, 5] 600ms, [8, 8, 4] 480ms
|
||
param_dict = {"cache": dict(), "is_final": False, "chunk_size": chunk_size}
|
||
chunk_stride = chunk_size[1] * 960 # 600ms、480ms
|
||
# first chunk, 600ms
|
||
speech_chunk = speech[0:chunk_stride]
|
||
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
|
||
print(rec_result)
|
||
# next chunk, 600ms
|
||
speech_chunk = speech[chunk_stride:chunk_stride+chunk_stride]
|
||
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
|
||
print(rec_result)
|
||
```
|
||
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/241)
|
||
|
||
#### [UniASR Model](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary)
|
||
There are three decoding mode for UniASR model(`fast`、`normal`、`offline`), for more model detailes, please refer to [docs](https://www.modelscope.cn/models/damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/summary)
|
||
```python
|
||
decoding_model = "fast" # "fast"、"normal"、"offline"
|
||
inference_pipeline = pipeline(
|
||
task=Tasks.auto_speech_recognition,
|
||
model='damo/speech_UniASR_asr_2pass-minnan-16k-common-vocab3825',
|
||
param_dict={"decoding_model": decoding_model})
|
||
|
||
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
|
||
print(rec_result)
|
||
```
|
||
The decoding mode of `fast` and `normal` is fake streaming, which could be used for evaluating of recognition accuracy.
|
||
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/151)
|
||
#### [RNN-T-online model]()
|
||
Undo
|
||
|
||
#### [MFCCA Model](https://www.modelscope.cn/models/NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950/summary)
|
||
For more model detailes, please refer to [docs](https://www.modelscope.cn/models/NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950/summary)
|
||
```python
|
||
from modelscope.pipelines import pipeline
|
||
from modelscope.utils.constant import Tasks
|
||
|
||
inference_pipeline = pipeline(
|
||
task=Tasks.auto_speech_recognition,
|
||
model='NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950',
|
||
model_revision='v3.0.0'
|
||
)
|
||
|
||
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
|
||
print(rec_result)
|
||
```
|
||
|
||
### API-reference
|
||
#### Define pipeline
|
||
- `task`: `Tasks.auto_speech_recognition`
|
||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
|
||
- `ncpu`: `1` (Default), sets the number of threads used for intraop parallelism on CPU
|
||
- `output_dir`: `None` (Default), the output path of results if set
|
||
- `batch_size`: `1` (Default), batch size when decoding
|
||
#### Infer pipeline
|
||
- `audio_in`: the input to decode, which could be:
|
||
- wav_path, `e.g.`: asr_example.wav,
|
||
- pcm_path, `e.g.`: asr_example.pcm,
|
||
- audio bytes stream, `e.g.`: bytes data from a microphone
|
||
- audio sample point,`e.g.`: `audio, rate = soundfile.read("asr_example_zh.wav")`, the dtype is numpy.ndarray or torch.Tensor
|
||
- wav.scp, kaldi style wav list (`wav_id \t wav_path`), `e.g.`:
|
||
```text
|
||
asr_example1 ./audios/asr_example1.wav
|
||
asr_example2 ./audios/asr_example2.wav
|
||
```
|
||
In this case of `wav.scp` input, `output_dir` must be set to save the output results
|
||
- `audio_fs`: audio sampling rate, only set when audio_in is pcm audio
|
||
- `output_dir`: None (Default), the output path of results if set
|
||
|
||
### Inference with multi-thread CPUs or multi GPUs
|
||
FunASR also offer recipes [egs_modelscope/asr/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) to decode with multi-thread CPUs, or multi GPUs.
|
||
|
||
- Setting parameters in `infer.sh`
|
||
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
|
||
- `data_dir`: the dataset dir needs to include `wav.scp`. If `${data_dir}/text` is also exists, CER will be computed
|
||
- `output_dir`: output dir of the recognition results
|
||
- `batch_size`: `64` (Default), batch size of inference on gpu
|
||
- `gpu_inference`: `true` (Default), whether to perform gpu decoding, set false for CPU inference
|
||
- `gpuid_list`: `0,1` (Default), which gpu_ids are used to infer
|
||
- `njob`: only used for CPU inference (`gpu_inference`=`false`), `64` (Default), the number of jobs for CPU decoding
|
||
- `checkpoint_dir`: only used for infer finetuned models, the path dir of finetuned models
|
||
- `checkpoint_name`: only used for infer finetuned models, `valid.cer_ctc.ave.pb` (Default), which checkpoint is used to infer
|
||
- `decoding_mode`: `normal` (Default), decoding mode for UniASR model(fast、normal、offline)
|
||
- `hotword_txt`: `None` (Default), hotword file for contextual paraformer model(the hotword file name ends with .txt")
|
||
|
||
- Decode with multi GPUs:
|
||
```shell
|
||
bash infer.sh \
|
||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||
--data_dir "./data/test" \
|
||
--output_dir "./results" \
|
||
--batch_size 64 \
|
||
--gpu_inference true \
|
||
--gpuid_list "0,1"
|
||
```
|
||
- Decode with multi-thread CPUs:
|
||
```shell
|
||
bash infer.sh \
|
||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||
--data_dir "./data/test" \
|
||
--output_dir "./results" \
|
||
--gpu_inference false \
|
||
--njob 64
|
||
```
|
||
|
||
- Results
|
||
|
||
The decoding results can be found in `$output_dir/1best_recog/text.cer`, which includes recognition results of each sample and the CER metric of the whole test set.
|
||
|
||
If you decode the SpeechIO test sets, you can use textnorm with `stage`=3, and `DETAILS.txt`, `RESULTS.txt` record the results and CER after text normalization.
|
||
|
||
|
||
## Finetune with pipeline
|
||
|
||
### Quick start
|
||
[finetune.py](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/finetune.py)
|
||
```python
|
||
import os
|
||
from modelscope.metainfo import Trainers
|
||
from modelscope.trainers import build_trainer
|
||
from modelscope.msdatasets.audio.asr_dataset import ASRDataset
|
||
|
||
def modelscope_finetune(params):
|
||
if not os.path.exists(params.output_dir):
|
||
os.makedirs(params.output_dir, exist_ok=True)
|
||
# dataset split ["train", "validation"]
|
||
ds_dict = ASRDataset.load(params.data_path, namespace='speech_asr')
|
||
kwargs = dict(
|
||
model=params.model,
|
||
data_dir=ds_dict,
|
||
dataset_type=params.dataset_type,
|
||
work_dir=params.output_dir,
|
||
batch_bins=params.batch_bins,
|
||
max_epoch=params.max_epoch,
|
||
lr=params.lr)
|
||
trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
|
||
trainer.train()
|
||
|
||
|
||
if __name__ == '__main__':
|
||
from funasr.utils.modelscope_param import modelscope_args
|
||
params = modelscope_args(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
|
||
params.output_dir = "./checkpoint" # 模型保存路径
|
||
params.data_path = "speech_asr_aishell1_trainsets" # 数据路径,可以为modelscope中已上传数据,也可以是本地数据
|
||
params.dataset_type = "small" # 小数据量设置small,若数据量大于1000小时,请使用large
|
||
params.batch_bins = 2000 # batch size,如果dataset_type="small",batch_bins单位为fbank特征帧数,如果dataset_type="large",batch_bins单位为毫秒,
|
||
params.max_epoch = 50 # 最大训练轮数
|
||
params.lr = 0.00005 # 设置学习率
|
||
|
||
modelscope_finetune(params)
|
||
```
|
||
|
||
```shell
|
||
python finetune.py &> log.txt &
|
||
```
|
||
|
||
### Finetune with your data
|
||
|
||
- Modify finetune training related parameters in [finetune.py](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/finetune.py)
|
||
- `output_dir`: result dir
|
||
- `data_dir`: the dataset dir needs to include files: `train/wav.scp`, `train/text`; `validation/wav.scp`, `validation/text`
|
||
- `dataset_type`: for dataset larger than 1000 hours, set as `large`, otherwise set as `small`
|
||
- `batch_bins`: batch size. For dataset_type is `small`, `batch_bins` indicates the feature frames. For dataset_type is `large`, `batch_bins` indicates the duration in ms
|
||
- `max_epoch`: number of training epoch
|
||
- `lr`: learning rate
|
||
|
||
- Training data formats:
|
||
```sh
|
||
cat ./example_data/text
|
||
BAC009S0002W0122 而 对 楼 市 成 交 抑 制 作 用 最 大 的 限 购
|
||
BAC009S0002W0123 也 成 为 地 方 政 府 的 眼 中 钉
|
||
english_example_1 hello world
|
||
english_example_2 go swim 去 游 泳
|
||
|
||
cat ./example_data/wav.scp
|
||
BAC009S0002W0122 /mnt/data/wav/train/S0002/BAC009S0002W0122.wav
|
||
BAC009S0002W0123 /mnt/data/wav/train/S0002/BAC009S0002W0123.wav
|
||
english_example_1 /mnt/data/wav/train/S0002/english_example_1.wav
|
||
english_example_2 /mnt/data/wav/train/S0002/english_example_2.wav
|
||
```
|
||
|
||
- Then you can run the pipeline to finetune with:
|
||
```shell
|
||
python finetune.py
|
||
```
|
||
If you want finetune with multi-GPUs, you could:
|
||
```shell
|
||
CUDA_VISIBLE_DEVICES=1,2 python -m torch.distributed.launch --nproc_per_node 2 finetune.py > log.txt 2>&1
|
||
```
|
||
## Inference with your finetuned model
|
||
|
||
- Setting parameters in [egs_modelscope/asr/TEMPLATE/infer.sh](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/asr/TEMPLATE/infer.sh) is the same with [docs](https://github.com/alibaba-damo-academy/FunASR/tree/main/egs_modelscope/asr/TEMPLATE#inference-with-multi-thread-cpus-or-multi-gpus), `model` is the model name from modelscope, which you finetuned.
|
||
|
||
- Decode with multi GPUs:
|
||
```shell
|
||
bash infer.sh \
|
||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||
--data_dir "./data/test" \
|
||
--output_dir "./results" \
|
||
--batch_size 64 \
|
||
--gpu_inference true \
|
||
--gpuid_list "0,1" \
|
||
--checkpoint_dir "./checkpoint" \
|
||
--checkpoint_name "valid.cer_ctc.ave.pb"
|
||
```
|
||
- Decode with multi-thread CPUs:
|
||
```shell
|
||
bash infer.sh \
|
||
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||
--data_dir "./data/test" \
|
||
--output_dir "./results" \
|
||
--gpu_inference false \
|
||
--njob 64 \
|
||
--checkpoint_dir "./checkpoint" \
|
||
--checkpoint_name "valid.cer_ctc.ave.pb"
|
||
```
|