This commit is contained in:
游雁 2023-04-27 21:11:04 +08:00
parent 9ce2fcb908
commit 30aa982bf2
8 changed files with 20 additions and 137 deletions

118
README.md
View File

@ -1,118 +0,0 @@
[//]: # (<div align="left"><img src="docs/images/funasr_logo.jpg" width="400"/></div>)
# FunASR: A Fundamental End-to-End Speech Recognition Toolkit
<p align="left">
<a href=""><img src="https://img.shields.io/badge/OS-Linux%2C%20Win%2C%20Mac-brightgreen.svg"></a>
<a href=""><img src="https://img.shields.io/badge/Python->=3.7,<=3.10-aff.svg"></a>
<a href=""><img src="https://img.shields.io/badge/Pytorch-%3E%3D1.11-blue"></a>
</p>
<strong>FunASR</strong> hopes to build a bridge between academic research and industrial applications on speech recognition. By supporting the training & finetuning of the industrial-grade speech recognition model released on [ModelScope](https://www.modelscope.cn/models?page=1&tasks=auto-speech-recognition), researchers and developers can conduct research and production of speech recognition models more conveniently, and promote the development of speech recognition ecology. ASR for Fun
[**News**](https://github.com/alibaba-damo-academy/FunASR#whats-new)
| [**Highlights**](#highlights)
| [**Installation**](#installation)
| [**Docs**](https://alibaba-damo-academy.github.io/FunASR/en/index.html)
| [**Tutorial**](https://github.com/alibaba-damo-academy/FunASR/wiki#funasr%E7%94%A8%E6%88%B7%E6%89%8B%E5%86%8C)
| [**Papers**](https://github.com/alibaba-damo-academy/FunASR#citations)
| [**Runtime**](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/runtime)
| [**Model Zoo**](https://github.com/alibaba-damo-academy/FunASR/blob/main/docs/modelscope_models.md)
| [**Contact**](#contact)
| [**M2MET2.0 Challenge**](https://github.com/alibaba-damo-academy/FunASR#multi-channel-multi-party-meeting-transcription-20-m2met20-challenge)
## What's new:
### Multi-Channel Multi-Party Meeting Transcription 2.0 (M2MET2.0) Challenge
We are pleased to announce that the M2MeT2.0 challenge will be held in the near future. The baseline system is conducted on FunASR and is provided as a receipe of AliMeeting corpus. For more details you can see the guidence of M2MET2.0 ([CN](https://alibaba-damo-academy.github.io/FunASR/m2met2_cn/index.html)/[EN](https://alibaba-damo-academy.github.io/FunASR/m2met2/index.html)).
### Release notes
For the release notes, please ref to [news](https://github.com/alibaba-damo-academy/FunASR/releases)
## Highlights
- FunASR supports speech recognition(ASR), Multi-talker ASR, Voice Activity Detection(VAD), Punctuation Restoration, Language Models, Speaker Verification and Speaker diarization.
- We have released large number of academic and industrial pretrained models on [ModelScope](https://www.modelscope.cn/models?page=1&tasks=auto-speech-recognition)
- The pretrained model [Paraformer-large](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) obtains the best performance on many tasks in [SpeechIO leaderboard](https://github.com/SpeechColab/Leaderboard)
- FunASR supplies a easy-to-use pipeline to finetune pretrained models from [ModelScope](https://www.modelscope.cn/models?page=1&tasks=auto-speech-recognition)
- Compared to [Espnet](https://github.com/espnet/espnet) framework, the training speed of large-scale datasets in FunASR is much faster owning to the optimized dataloader.
## Installation
Install from pip
```shell
pip install -U funasr
# For the users in China, you could install with the command:
# pip install -U funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple
```
Or install from source code
``` sh
git clone https://github.com/alibaba/FunASR.git && cd FunASR
pip install -e ./
# For the users in China, you could install with the command:
# pip install -e ./ -i https://mirror.sjtu.edu.cn/pypi/web/simple
```
If you want to use the pretrained models in ModelScope, you should install the modelscope:
```shell
pip install -U modelscope
# For the users in China, you could install with the command:
# pip install -U modelscope -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html -i https://mirror.sjtu.edu.cn/pypi/web/simple
```
For more details, please ref to [installation](https://alibaba-damo-academy.github.io/FunASR/en/installation.html)
[//]: # ()
[//]: # (## Usage)
[//]: # (For users who are new to FunASR and ModelScope, please refer to FunASR Docs&#40;[CN]&#40;https://alibaba-damo-academy.github.io/FunASR/cn/index.html&#41; / [EN]&#40;https://alibaba-damo-academy.github.io/FunASR/en/index.html&#41;&#41;)
## Contact
If you have any questions about FunASR, please contact us by
- email: [funasr@list.alibaba-inc.com](funasr@list.alibaba-inc.com)
|Dingding group | Wechat group |
|:---:|:-----------------------------------------------------:|
|<div align="left"><img src="docs/images/dingding.jpg" width="250"/> | <img src="docs/images/wechat.png" width="232"/></div> |
## Contributors
| <div align="left"><img src="docs/images/damo.png" width="180"/> | <div align="left"><img src="docs/images/nwpu.png" width="260"/> | <img src="docs/images/China_Telecom.png" width="200"/> </div> | <img src="docs/images/RapidAI.png" width="200"/> </div> | <img src="docs/images/DeepScience.png" width="200"/> </div> |
|:---------------------------------------------------------------:|:---------------------------------------------------------------:|:--------------------------------------------------------------:|:-------------------------------------------------------:|:-----------------------------------------------------------:|
## Acknowledge
1. We borrowed a lot of code from [Kaldi](http://kaldi-asr.org/) for data preparation.
2. We borrowed a lot of code from [ESPnet](https://github.com/espnet/espnet). FunASR follows up the training and finetuning pipelines of ESPnet.
3. We referred [Wenet](https://github.com/wenet-e2e/wenet) for building dataloader for large scale data training.
4. We acknowledge [ChinaTelecom](https://github.com/zhuzizyf/damo-fsmn-vad-infer-httpserver) for contributing the VAD runtime.
5. We acknowledge [RapidAI](https://github.com/RapidAI) for contributing the Paraformer and CT_Transformer-punc runtime.
6. We acknowledge [DeepScience](https://www.deepscience.cn) for contributing the grpc service.
## License
This project is licensed under the [The MIT License](https://opensource.org/licenses/MIT). FunASR also contains various third-party components and some code modified from other repos under other open source licenses.
## Citations
``` bibtex
@inproceedings{gao2022paraformer,
title={Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition},
author={Gao, Zhifu and Zhang, Shiliang and McLoughlin, Ian and Yan, Zhijie},
booktitle={INTERSPEECH},
year={2022}
}
@inproceedings{gao2020universal,
title={Universal ASR: Unifying Streaming and Non-Streaming ASR Using a Single Encoder-Decoder Model},
author={Gao, Zhifu and Zhang, Shiliang and Lei, Ming and McLoughlin, Ian},
booktitle={arXiv preprint arXiv:2010.14099},
year={2020}
}
@inproceedings{Shi2023AchievingTP,
title={Achieving Timestamp Prediction While Recognizing with Non-Autoregressive End-to-End ASR Model},
author={Xian Shi and Yanni Chen and Shiliang Zhang and Zhijie Yan},
booktitle={arXiv preprint arXiv:2301.12343}
year={2023}
}
```

View File

@ -76,15 +76,15 @@ rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyu
print(rec_result)
```
#### API-reference
##### Define pipeline
### API-reference
#### Define pipeline
- `task`: `Tasks.auto_speech_recognition`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
- `ncpu`: `1` (Default), sets the number of threads used for intraop parallelism on CPU
- `output_dir`: `None` (Default), the output path of results if set
- `batch_size`: `1` (Default), batch size when decoding
##### Infer pipeline
#### Infer pipeline
- `audio_in`: the input to decode, which could be:
- wav_path, `e.g.`: asr_example.wav,
- pcm_path, `e.g.`: asr_example.pcm,

View File

@ -9,6 +9,7 @@ if __name__ == '__main__':
model='damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
vad_model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
punc_model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
output_dir=output_dir
)
rec_result = inference_pipeline(audio_in=audio_in)
print(rec_result)

View File

@ -52,15 +52,15 @@ print(rec_result_all)
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/discussions/238)
#### API-reference
##### Define pipeline
### API-reference
#### Define pipeline
- `task`: `Tasks.punctuation`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
- `output_dir`: `None` (Default), the output path of results if set
- `model_revision`: `None` (Default), setting the model version
##### Infer pipeline
#### Infer pipeline
- `text_in`: the input to decode, which could be:
- text bytes, `e.g.`: "我们都是木头人不会讲话不会动"
- text file, `e.g.`: example/punc_example.txt

View File

@ -37,8 +37,8 @@ results = inference_diar_pipline(audio_in=audio_list)
print(results)
```
#### API-reference
##### Define pipeline
### API-reference
#### Define pipeline
- `task`: `Tasks.speaker_diarization`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
@ -50,7 +50,7 @@ print(results)
- vad format: spk1: [1.0, 3.0], [5.0, 8.0]
- rttm format: "SPEAKER test1 0 1.00 2.00 <NA> <NA> spk1 <NA> <NA>" and "SPEAKER test1 0 5.00 3.00 <NA> <NA> spk1 <NA> <NA>"
##### Infer pipeline for speaker embedding extraction
#### Infer pipeline for speaker embedding extraction
- `audio_in`: the input to process, which could be:
- list of url: `e.g.`: waveform files at a website
- list of local file path: `e.g.`: path/to/a.wav

View File

@ -47,8 +47,8 @@ speaker_embedding = rec_result["spk_embedding"]
```
Full code of demo, please ref to [infer.py](https://github.com/alibaba-damo-academy/FunASR/blob/main/egs_modelscope/speaker_verification/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch/infer.py).
#### API-reference
##### Define pipeline
### API-reference
#### Define pipeline
- `task`: `Tasks.speaker_verification`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
@ -57,7 +57,7 @@ Full code of demo, please ref to [infer.py](https://github.com/alibaba-damo-acad
- `sv_threshold`: `0.9465` (Default), the similarity threshold to determine
whether utterances belong to the same speaker (it should be in (0, 1))
##### Infer pipeline for speaker embedding extraction
#### Infer pipeline for speaker embedding extraction
- `audio_in`: the input to process, which could be:
- url (str): `e.g.`: https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav
- local_path: `e.g.`: path/to/a.wav
@ -71,7 +71,7 @@ whether utterances belong to the same speaker (it should be in (0, 1))
- fbank1.scp,speech,kaldi_ark: `e.g.`: extracted 80-dimensional fbank features
with kaldi toolkits.
##### Infer pipeline for speaker verification
#### Infer pipeline for speaker verification
- `audio_in`: the input to process, which could be:
- Tuple(url1, url2): `e.g.`: (https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav, https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_different.wav)
- Tuple(local_path1, local_path2): `e.g.`: (path/to/a.wav, path/to/b.wav)

View File

@ -23,15 +23,15 @@ Timestamp pipeline can also be used after ASR pipeline to compose complete ASR f
#### API-reference
##### Define pipeline
### API-reference
#### Define pipeline
- `task`: `Tasks.speech_timestamp`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
- `ncpu`: `1` (Default), sets the number of threads used for intraop parallelism on CPU
- `output_dir`: `None` (Default), the output path of results if set
- `batch_size`: `1` (Default), batch size when decoding
##### Infer pipeline
#### Infer pipeline
- `audio_in`: the input speech to predict, which could be:
- wav_path, `e.g.`: asr_example.wav (wav in local or url),
- wav.scp, kaldi style wav list (`wav_id wav_path`), `e.g.`:

View File

@ -43,15 +43,15 @@ Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/
#### API-reference
##### Define pipeline
### API-reference
#### Define pipeline
- `task`: `Tasks.voice_activity_detection`
- `model`: model name in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope), or model path in local disk
- `ngpu`: `1` (Default), decoding on GPU. If ngpu=0, decoding on CPU
- `ncpu`: `1` (Default), sets the number of threads used for intraop parallelism on CPU
- `output_dir`: `None` (Default), the output path of results if set
- `batch_size`: `1` (Default), batch size when decoding
##### Infer pipeline
#### Infer pipeline
- `audio_in`: the input to decode, which could be:
- wav_path, `e.g.`: asr_example.wav,
- pcm_path, `e.g.`: asr_example.pcm,