mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
commit
bcf6be4c90
@ -210,9 +210,18 @@ def inference_launch(**kwargs):
|
||||
elif mode == "uniasr":
|
||||
from funasr.bin.asr_inference_uniasr import inference_modelscope
|
||||
return inference_modelscope(**kwargs)
|
||||
elif mode == "uniasr_vad":
|
||||
from funasr.bin.asr_inference_uniasr_vad import inference_modelscope
|
||||
return inference_modelscope(**kwargs)
|
||||
elif mode == "paraformer":
|
||||
from funasr.bin.asr_inference_paraformer import inference_modelscope
|
||||
return inference_modelscope(**kwargs)
|
||||
elif mode == "paraformer_vad":
|
||||
from funasr.bin.asr_inference_paraformer_vad import inference_modelscope
|
||||
return inference_modelscope(**kwargs)
|
||||
elif mode == "paraformer_punc":
|
||||
logging.info("Unknown decoding mode: {}".format(mode))
|
||||
return None
|
||||
elif mode == "paraformer_vad_punc":
|
||||
from funasr.bin.asr_inference_paraformer_vad_punc import inference_modelscope
|
||||
return inference_modelscope(**kwargs)
|
||||
|
||||
521
funasr/bin/asr_inference_paraformer_vad.py
Normal file
521
funasr/bin/asr_inference_paraformer_vad.py
Normal file
@ -0,0 +1,521 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import json
|
||||
import argparse
|
||||
import logging
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
from typing import Sequence
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
from typing import Dict
|
||||
from typing import Any
|
||||
from typing import List
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr.fileio.datadir_writer import DatadirWriter
|
||||
from funasr.modules.beam_search.beam_search import BeamSearchPara as BeamSearch
|
||||
from funasr.modules.beam_search.beam_search import Hypothesis
|
||||
from funasr.modules.scorers.ctc import CTCPrefixScorer
|
||||
from funasr.modules.scorers.length_bonus import LengthBonus
|
||||
from funasr.modules.subsampling import TooShortUttError
|
||||
from funasr.tasks.asr import ASRTaskParaformer as ASRTask
|
||||
from funasr.tasks.lm import LMTask
|
||||
from funasr.text.build_tokenizer import build_tokenizer
|
||||
from funasr.text.token_id_converter import TokenIDConverter
|
||||
from funasr.torch_utils.device_funcs import to_device
|
||||
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
|
||||
from funasr.utils import config_argparse
|
||||
from funasr.utils.cli_utils import get_commandline_args
|
||||
from funasr.utils.types import str2bool
|
||||
from funasr.utils.types import str2triple_str
|
||||
from funasr.utils.types import str_or_none
|
||||
from funasr.utils import asr_utils, wav_utils, postprocess_utils
|
||||
from funasr.models.frontend.wav_frontend import WavFrontend
|
||||
from funasr.tasks.vad import VADTask
|
||||
from funasr.utils.timestamp_tools import time_stamp_lfr6
|
||||
from funasr.bin.punctuation_infer import Text2Punc
|
||||
from funasr.bin.asr_inference_paraformer_vad_punc import Speech2Text
|
||||
from funasr.bin.asr_inference_paraformer_vad_punc import Speech2VadSegment
|
||||
|
||||
|
||||
def inference(
|
||||
maxlenratio: float,
|
||||
minlenratio: float,
|
||||
batch_size: int,
|
||||
beam_size: int,
|
||||
ngpu: int,
|
||||
ctc_weight: float,
|
||||
lm_weight: float,
|
||||
penalty: float,
|
||||
log_level: Union[int, str],
|
||||
data_path_and_name_and_type,
|
||||
asr_train_config: Optional[str],
|
||||
asr_model_file: Optional[str],
|
||||
cmvn_file: Optional[str] = None,
|
||||
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
lm_train_config: Optional[str] = None,
|
||||
lm_file: Optional[str] = None,
|
||||
token_type: Optional[str] = None,
|
||||
key_file: Optional[str] = None,
|
||||
word_lm_train_config: Optional[str] = None,
|
||||
bpemodel: Optional[str] = None,
|
||||
allow_variable_data_keys: bool = False,
|
||||
streaming: bool = False,
|
||||
output_dir: Optional[str] = None,
|
||||
dtype: str = "float32",
|
||||
seed: int = 0,
|
||||
ngram_weight: float = 0.9,
|
||||
nbest: int = 1,
|
||||
num_workers: int = 1,
|
||||
vad_infer_config: Optional[str] = None,
|
||||
vad_model_file: Optional[str] = None,
|
||||
vad_cmvn_file: Optional[str] = None,
|
||||
time_stamp_writer: bool = False,
|
||||
punc_infer_config: Optional[str] = None,
|
||||
punc_model_file: Optional[str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
inference_pipeline = inference_modelscope(
|
||||
maxlenratio=maxlenratio,
|
||||
minlenratio=minlenratio,
|
||||
batch_size=batch_size,
|
||||
beam_size=beam_size,
|
||||
ngpu=ngpu,
|
||||
ctc_weight=ctc_weight,
|
||||
lm_weight=lm_weight,
|
||||
penalty=penalty,
|
||||
log_level=log_level,
|
||||
asr_train_config=asr_train_config,
|
||||
asr_model_file=asr_model_file,
|
||||
cmvn_file=cmvn_file,
|
||||
raw_inputs=raw_inputs,
|
||||
lm_train_config=lm_train_config,
|
||||
lm_file=lm_file,
|
||||
token_type=token_type,
|
||||
key_file=key_file,
|
||||
word_lm_train_config=word_lm_train_config,
|
||||
bpemodel=bpemodel,
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
streaming=streaming,
|
||||
output_dir=output_dir,
|
||||
dtype=dtype,
|
||||
seed=seed,
|
||||
ngram_weight=ngram_weight,
|
||||
nbest=nbest,
|
||||
num_workers=num_workers,
|
||||
vad_infer_config=vad_infer_config,
|
||||
vad_model_file=vad_model_file,
|
||||
vad_cmvn_file=vad_cmvn_file,
|
||||
time_stamp_writer=time_stamp_writer,
|
||||
punc_infer_config=punc_infer_config,
|
||||
punc_model_file=punc_model_file,
|
||||
**kwargs,
|
||||
)
|
||||
return inference_pipeline(data_path_and_name_and_type, raw_inputs)
|
||||
|
||||
def inference_modelscope(
|
||||
maxlenratio: float,
|
||||
minlenratio: float,
|
||||
batch_size: int,
|
||||
beam_size: int,
|
||||
ngpu: int,
|
||||
ctc_weight: float,
|
||||
lm_weight: float,
|
||||
penalty: float,
|
||||
log_level: Union[int, str],
|
||||
# data_path_and_name_and_type,
|
||||
asr_train_config: Optional[str],
|
||||
asr_model_file: Optional[str],
|
||||
cmvn_file: Optional[str] = None,
|
||||
lm_train_config: Optional[str] = None,
|
||||
lm_file: Optional[str] = None,
|
||||
token_type: Optional[str] = None,
|
||||
key_file: Optional[str] = None,
|
||||
word_lm_train_config: Optional[str] = None,
|
||||
bpemodel: Optional[str] = None,
|
||||
allow_variable_data_keys: bool = False,
|
||||
output_dir: Optional[str] = None,
|
||||
dtype: str = "float32",
|
||||
seed: int = 0,
|
||||
ngram_weight: float = 0.9,
|
||||
nbest: int = 1,
|
||||
num_workers: int = 1,
|
||||
vad_infer_config: Optional[str] = None,
|
||||
vad_model_file: Optional[str] = None,
|
||||
vad_cmvn_file: Optional[str] = None,
|
||||
time_stamp_writer: bool = True,
|
||||
punc_infer_config: Optional[str] = None,
|
||||
punc_model_file: Optional[str] = None,
|
||||
outputs_dict: Optional[bool] = True,
|
||||
param_dict: dict = None,
|
||||
**kwargs,
|
||||
):
|
||||
assert check_argument_types()
|
||||
|
||||
if word_lm_train_config is not None:
|
||||
raise NotImplementedError("Word LM is not implemented")
|
||||
if ngpu > 1:
|
||||
raise NotImplementedError("only single GPU decoding is supported")
|
||||
|
||||
logging.basicConfig(
|
||||
level=log_level,
|
||||
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
)
|
||||
|
||||
if ngpu >= 1 and torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
# 1. Set random-seed
|
||||
set_all_random_seed(seed)
|
||||
|
||||
# 2. Build speech2vadsegment
|
||||
speech2vadsegment_kwargs = dict(
|
||||
vad_infer_config=vad_infer_config,
|
||||
vad_model_file=vad_model_file,
|
||||
vad_cmvn_file=vad_cmvn_file,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
# logging.info("speech2vadsegment_kwargs: {}".format(speech2vadsegment_kwargs))
|
||||
speech2vadsegment = Speech2VadSegment(**speech2vadsegment_kwargs)
|
||||
|
||||
# 3. Build speech2text
|
||||
speech2text_kwargs = dict(
|
||||
asr_train_config=asr_train_config,
|
||||
asr_model_file=asr_model_file,
|
||||
cmvn_file=cmvn_file,
|
||||
lm_train_config=lm_train_config,
|
||||
lm_file=lm_file,
|
||||
token_type=token_type,
|
||||
bpemodel=bpemodel,
|
||||
device=device,
|
||||
maxlenratio=maxlenratio,
|
||||
minlenratio=minlenratio,
|
||||
dtype=dtype,
|
||||
beam_size=beam_size,
|
||||
ctc_weight=ctc_weight,
|
||||
lm_weight=lm_weight,
|
||||
ngram_weight=ngram_weight,
|
||||
penalty=penalty,
|
||||
nbest=nbest,
|
||||
)
|
||||
speech2text = Speech2Text(**speech2text_kwargs)
|
||||
text2punc = None
|
||||
if punc_model_file is not None:
|
||||
text2punc = Text2Punc(punc_infer_config, punc_model_file, device=device, dtype=dtype)
|
||||
|
||||
if output_dir is not None:
|
||||
writer = DatadirWriter(output_dir)
|
||||
ibest_writer = writer[f"1best_recog"]
|
||||
ibest_writer["token_list"][""] = " ".join(speech2text.asr_train_args.token_list)
|
||||
|
||||
def _forward(data_path_and_name_and_type,
|
||||
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
output_dir_v2: Optional[str] = None,
|
||||
fs: dict = None,
|
||||
param_dict: dict = None,
|
||||
):
|
||||
# 3. Build data-iterator
|
||||
if data_path_and_name_and_type is None and raw_inputs is not None:
|
||||
if isinstance(raw_inputs, torch.Tensor):
|
||||
raw_inputs = raw_inputs.numpy()
|
||||
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
|
||||
loader = ASRTask.build_streaming_iterator(
|
||||
data_path_and_name_and_type,
|
||||
dtype=dtype,
|
||||
fs=fs,
|
||||
batch_size=1,
|
||||
key_file=key_file,
|
||||
num_workers=num_workers,
|
||||
preprocess_fn=VADTask.build_preprocess_fn(speech2vadsegment.vad_infer_args, False),
|
||||
collate_fn=VADTask.build_collate_fn(speech2vadsegment.vad_infer_args, False),
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
inference=True,
|
||||
)
|
||||
|
||||
finish_count = 0
|
||||
file_count = 1
|
||||
lfr_factor = 6
|
||||
# 7 .Start for-loop
|
||||
asr_result_list = []
|
||||
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
|
||||
writer = None
|
||||
if output_path is not None:
|
||||
writer = DatadirWriter(output_path)
|
||||
ibest_writer = writer[f"1best_recog"]
|
||||
|
||||
for keys, batch in loader:
|
||||
assert isinstance(batch, dict), type(batch)
|
||||
assert all(isinstance(s, str) for s in keys), keys
|
||||
_bs = len(next(iter(batch.values())))
|
||||
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
||||
|
||||
vad_results = speech2vadsegment(**batch)
|
||||
fbanks, vadsegments = vad_results[0], vad_results[1]
|
||||
for i, segments in enumerate(vadsegments):
|
||||
result_segments = [["", [], [], ]]
|
||||
for j, segment_idx in enumerate(segments):
|
||||
bed_idx, end_idx = int(segment_idx[0] / 10), int(segment_idx[1] / 10)
|
||||
segment = fbanks[:, bed_idx:end_idx, :].to(device)
|
||||
speech_lengths = torch.Tensor([end_idx - bed_idx]).int().to(device)
|
||||
batch = {"speech": segment, "speech_lengths": speech_lengths, "begin_time": vadsegments[i][j][0],
|
||||
"end_time": vadsegments[i][j][1]}
|
||||
results = speech2text(**batch)
|
||||
if len(results) < 1:
|
||||
continue
|
||||
|
||||
result_cur = [results[0][:-2]]
|
||||
if j == 0:
|
||||
result_segments = result_cur
|
||||
else:
|
||||
result_segments = [[result_segments[0][i] + result_cur[0][i] for i in range(len(result_cur[0]))]]
|
||||
|
||||
key = keys[0]
|
||||
result = result_segments[0]
|
||||
text, token, token_int = result[0], result[1], result[2]
|
||||
time_stamp = None if len(result) < 4 else result[3]
|
||||
|
||||
|
||||
postprocessed_result = postprocess_utils.sentence_postprocess(token, time_stamp)
|
||||
text_postprocessed = ""
|
||||
time_stamp_postprocessed = ""
|
||||
text_postprocessed_punc = postprocessed_result
|
||||
if len(postprocessed_result) == 3:
|
||||
text_postprocessed, time_stamp_postprocessed, word_lists = postprocessed_result[0], \
|
||||
postprocessed_result[1], \
|
||||
postprocessed_result[2]
|
||||
text_postprocessed_punc = ""
|
||||
if len(word_lists) > 0 and text2punc is not None:
|
||||
text_postprocessed_punc, punc_id_list = text2punc(word_lists, 20)
|
||||
|
||||
|
||||
item = {'key': key, 'value': text_postprocessed_punc}
|
||||
if text_postprocessed != "":
|
||||
item['text_postprocessed'] = text_postprocessed
|
||||
if time_stamp_postprocessed != "":
|
||||
item['time_stamp'] = time_stamp_postprocessed
|
||||
|
||||
asr_result_list.append(item)
|
||||
finish_count += 1
|
||||
# asr_utils.print_progress(finish_count / file_count)
|
||||
if writer is not None:
|
||||
# Write the result to each file
|
||||
ibest_writer["token"][key] = " ".join(token)
|
||||
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
|
||||
ibest_writer["vad"][key] = "{}".format(vadsegments)
|
||||
ibest_writer["text"][key] = text_postprocessed
|
||||
ibest_writer["text_with_punc"][key] = text_postprocessed_punc
|
||||
if time_stamp_postprocessed is not None:
|
||||
ibest_writer["time_stamp"][key] = "{}".format(time_stamp_postprocessed)
|
||||
|
||||
logging.info("decoding, utt: {}, predictions: {}".format(key, text_postprocessed_punc))
|
||||
|
||||
|
||||
return asr_result_list
|
||||
return _forward
|
||||
|
||||
def get_parser():
|
||||
parser = config_argparse.ArgumentParser(
|
||||
description="ASR Decoding",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
|
||||
# Note(kamo): Use '_' instead of '-' as separator.
|
||||
# '-' is confusing if written in yaml.
|
||||
parser.add_argument(
|
||||
"--log_level",
|
||||
type=lambda x: x.upper(),
|
||||
default="INFO",
|
||||
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
|
||||
help="The verbose level of logging",
|
||||
)
|
||||
|
||||
parser.add_argument("--output_dir", type=str, required=True)
|
||||
parser.add_argument(
|
||||
"--ngpu",
|
||||
type=int,
|
||||
default=0,
|
||||
help="The number of gpus. 0 indicates CPU mode",
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
default="float32",
|
||||
choices=["float16", "float32", "float64"],
|
||||
help="Data type",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_workers",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The number of workers used for DataLoader",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group("Input data related")
|
||||
group.add_argument(
|
||||
"--data_path_and_name_and_type",
|
||||
type=str2triple_str,
|
||||
required=False,
|
||||
action="append",
|
||||
)
|
||||
group.add_argument("--key_file", type=str_or_none)
|
||||
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
|
||||
|
||||
group = parser.add_argument_group("The model configuration related")
|
||||
group.add_argument(
|
||||
"--asr_train_config",
|
||||
type=str,
|
||||
help="ASR training configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--asr_model_file",
|
||||
type=str,
|
||||
help="ASR model parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--cmvn_file",
|
||||
type=str,
|
||||
help="Global cmvn file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--lm_train_config",
|
||||
type=str,
|
||||
help="LM training configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--lm_file",
|
||||
type=str,
|
||||
help="LM parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--word_lm_train_config",
|
||||
type=str,
|
||||
help="Word LM training configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--word_lm_file",
|
||||
type=str,
|
||||
help="Word LM parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--ngram_file",
|
||||
type=str,
|
||||
help="N-gram parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--model_tag",
|
||||
type=str,
|
||||
help="Pretrained model tag. If specify this option, *_train_config and "
|
||||
"*_file will be overwritten",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group("Beam-search related")
|
||||
group.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The batch size for inference",
|
||||
)
|
||||
group.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
|
||||
group.add_argument("--beam_size", type=int, default=20, help="Beam size")
|
||||
group.add_argument("--penalty", type=float, default=0.0, help="Insertion penalty")
|
||||
group.add_argument(
|
||||
"--maxlenratio",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Input length ratio to obtain max output length. "
|
||||
"If maxlenratio=0.0 (default), it uses a end-detect "
|
||||
"function "
|
||||
"to automatically find maximum hypothesis lengths."
|
||||
"If maxlenratio<0.0, its absolute value is interpreted"
|
||||
"as a constant max output length",
|
||||
)
|
||||
group.add_argument(
|
||||
"--minlenratio",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Input length ratio to obtain min output length",
|
||||
)
|
||||
group.add_argument(
|
||||
"--ctc_weight",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="CTC weight in joint decoding",
|
||||
)
|
||||
group.add_argument("--lm_weight", type=float, default=1.0, help="RNNLM weight")
|
||||
group.add_argument("--ngram_weight", type=float, default=0.9, help="ngram weight")
|
||||
group.add_argument("--streaming", type=str2bool, default=False)
|
||||
group.add_argument("--time_stamp_writer", type=str2bool, default=False)
|
||||
|
||||
group.add_argument(
|
||||
"--frontend_conf",
|
||||
default=None,
|
||||
help="",
|
||||
)
|
||||
group.add_argument("--raw_inputs", type=list, default=None)
|
||||
# example=[{'key':'EdevDEWdIYQ_0021','file':'/mnt/data/jiangyu.xzy/test_data/speech_io/SPEECHIO_ASR_ZH00007_zhibodaihuo/wav/EdevDEWdIYQ_0021.wav'}])
|
||||
|
||||
group = parser.add_argument_group("Text converter related")
|
||||
group.add_argument(
|
||||
"--token_type",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
choices=["char", "bpe", None],
|
||||
help="The token type for ASR model. "
|
||||
"If not given, refers from the training args",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bpemodel",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
help="The model path of sentencepiece. "
|
||||
"If not given, refers from the training args",
|
||||
)
|
||||
group.add_argument(
|
||||
"--vad_infer_config",
|
||||
type=str,
|
||||
help="VAD infer configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--vad_model_file",
|
||||
type=str,
|
||||
help="VAD model parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--vad_cmvn_file",
|
||||
type=str,
|
||||
help="vad, Global cmvn file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--punc_infer_config",
|
||||
type=str,
|
||||
help="VAD infer configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--punc_model_file",
|
||||
type=str,
|
||||
help="VAD model parameter file",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def main(cmd=None):
|
||||
print(get_commandline_args(), file=sys.stderr)
|
||||
parser = get_parser()
|
||||
args = parser.parse_args(cmd)
|
||||
kwargs = vars(args)
|
||||
kwargs.pop("config", None)
|
||||
inference(**kwargs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
680
funasr/bin/asr_inference_uniasr_vad.py
Normal file
680
funasr/bin/asr_inference_uniasr_vad.py
Normal file
@ -0,0 +1,680 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import logging
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
from typing import Optional
|
||||
from typing import Sequence
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
from typing import Dict
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
from typeguard import check_return_type
|
||||
|
||||
from funasr.fileio.datadir_writer import DatadirWriter
|
||||
from funasr.modules.beam_search.beam_search import BeamSearchScama as BeamSearch
|
||||
from funasr.modules.beam_search.beam_search import Hypothesis
|
||||
from funasr.modules.scorers.ctc import CTCPrefixScorer
|
||||
from funasr.modules.scorers.length_bonus import LengthBonus
|
||||
from funasr.modules.subsampling import TooShortUttError
|
||||
from funasr.tasks.asr import ASRTaskUniASR as ASRTask
|
||||
from funasr.tasks.lm import LMTask
|
||||
from funasr.text.build_tokenizer import build_tokenizer
|
||||
from funasr.text.token_id_converter import TokenIDConverter
|
||||
from funasr.torch_utils.device_funcs import to_device
|
||||
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
|
||||
from funasr.utils import config_argparse
|
||||
from funasr.utils.cli_utils import get_commandline_args
|
||||
from funasr.utils.types import str2bool
|
||||
from funasr.utils.types import str2triple_str
|
||||
from funasr.utils.types import str_or_none
|
||||
from funasr.utils import asr_utils, wav_utils, postprocess_utils
|
||||
from funasr.models.frontend.wav_frontend import WavFrontend
|
||||
|
||||
|
||||
header_colors = '\033[95m'
|
||||
end_colors = '\033[0m'
|
||||
|
||||
|
||||
class Speech2Text:
|
||||
"""Speech2Text class
|
||||
|
||||
Examples:
|
||||
>>> import soundfile
|
||||
>>> speech2text = Speech2Text("asr_config.yml", "asr.pth")
|
||||
>>> audio, rate = soundfile.read("speech.wav")
|
||||
>>> speech2text(audio)
|
||||
[(text, token, token_int, hypothesis object), ...]
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
asr_train_config: Union[Path, str] = None,
|
||||
asr_model_file: Union[Path, str] = None,
|
||||
cmvn_file: Union[Path, str] = None,
|
||||
lm_train_config: Union[Path, str] = None,
|
||||
lm_file: Union[Path, str] = None,
|
||||
token_type: str = None,
|
||||
bpemodel: str = None,
|
||||
device: str = "cpu",
|
||||
maxlenratio: float = 0.0,
|
||||
minlenratio: float = 0.0,
|
||||
dtype: str = "float32",
|
||||
beam_size: int = 20,
|
||||
ctc_weight: float = 0.5,
|
||||
lm_weight: float = 1.0,
|
||||
ngram_weight: float = 0.9,
|
||||
penalty: float = 0.0,
|
||||
nbest: int = 1,
|
||||
token_num_relax: int = 1,
|
||||
decoding_ind: int = 0,
|
||||
decoding_mode: str = "model1",
|
||||
frontend_conf: dict = None,
|
||||
**kwargs,
|
||||
):
|
||||
assert check_argument_types()
|
||||
|
||||
# 1. Build ASR model
|
||||
scorers = {}
|
||||
asr_model, asr_train_args = ASRTask.build_model_from_file(
|
||||
asr_train_config, asr_model_file, cmvn_file, device
|
||||
)
|
||||
frontend = None
|
||||
if asr_train_args.frontend is not None and asr_train_args.frontend_conf is not None:
|
||||
frontend = WavFrontend(cmvn_file=cmvn_file, **asr_train_args.frontend_conf)
|
||||
|
||||
logging.info("asr_train_args: {}".format(asr_train_args))
|
||||
asr_model.to(dtype=getattr(torch, dtype)).eval()
|
||||
if decoding_mode == "model1":
|
||||
decoder = asr_model.decoder
|
||||
else:
|
||||
decoder = asr_model.decoder2
|
||||
|
||||
if asr_model.ctc != None:
|
||||
ctc = CTCPrefixScorer(ctc=asr_model.ctc, eos=asr_model.eos)
|
||||
scorers.update(
|
||||
ctc=ctc
|
||||
)
|
||||
token_list = asr_model.token_list
|
||||
scorers.update(
|
||||
decoder=decoder,
|
||||
length_bonus=LengthBonus(len(token_list)),
|
||||
)
|
||||
|
||||
# 2. Build Language model
|
||||
if lm_train_config is not None:
|
||||
lm, lm_train_args = LMTask.build_model_from_file(
|
||||
lm_train_config, lm_file, device
|
||||
)
|
||||
scorers["lm"] = lm.lm
|
||||
|
||||
# 3. Build ngram model
|
||||
# ngram is not supported now
|
||||
ngram = None
|
||||
scorers["ngram"] = ngram
|
||||
|
||||
# 4. Build BeamSearch object
|
||||
# transducer is not supported now
|
||||
beam_search_transducer = None
|
||||
|
||||
weights = dict(
|
||||
decoder=1.0 - ctc_weight,
|
||||
ctc=ctc_weight,
|
||||
lm=lm_weight,
|
||||
ngram=ngram_weight,
|
||||
length_bonus=penalty,
|
||||
)
|
||||
beam_search = BeamSearch(
|
||||
beam_size=beam_size,
|
||||
weights=weights,
|
||||
scorers=scorers,
|
||||
sos=asr_model.sos,
|
||||
eos=asr_model.eos,
|
||||
vocab_size=len(token_list),
|
||||
token_list=token_list,
|
||||
pre_beam_score_key=None if ctc_weight == 1.0 else "full",
|
||||
)
|
||||
|
||||
beam_search.to(device=device, dtype=getattr(torch, dtype)).eval()
|
||||
for scorer in scorers.values():
|
||||
if isinstance(scorer, torch.nn.Module):
|
||||
scorer.to(device=device, dtype=getattr(torch, dtype)).eval()
|
||||
# logging.info(f"Beam_search: {beam_search}")
|
||||
logging.info(f"Decoding device={device}, dtype={dtype}")
|
||||
|
||||
# 5. [Optional] Build Text converter: e.g. bpe-sym -> Text
|
||||
if token_type is None:
|
||||
token_type = asr_train_args.token_type
|
||||
if bpemodel is None:
|
||||
bpemodel = asr_train_args.bpemodel
|
||||
|
||||
if token_type is None:
|
||||
tokenizer = None
|
||||
elif token_type == "bpe":
|
||||
if bpemodel is not None:
|
||||
tokenizer = build_tokenizer(token_type=token_type, bpemodel=bpemodel)
|
||||
else:
|
||||
tokenizer = None
|
||||
else:
|
||||
tokenizer = build_tokenizer(token_type=token_type)
|
||||
converter = TokenIDConverter(token_list=token_list)
|
||||
logging.info(f"Text tokenizer: {tokenizer}")
|
||||
|
||||
self.asr_model = asr_model
|
||||
self.asr_train_args = asr_train_args
|
||||
self.converter = converter
|
||||
self.tokenizer = tokenizer
|
||||
self.beam_search = beam_search
|
||||
self.beam_search_transducer = beam_search_transducer
|
||||
self.maxlenratio = maxlenratio
|
||||
self.minlenratio = minlenratio
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
self.nbest = nbest
|
||||
self.token_num_relax = token_num_relax
|
||||
self.decoding_ind = decoding_ind
|
||||
self.decoding_mode = decoding_mode
|
||||
self.frontend = frontend
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self, speech: Union[torch.Tensor, np.ndarray], speech_lengths: Union[torch.Tensor, np.ndarray] = None
|
||||
) -> List[
|
||||
Tuple[
|
||||
Optional[str],
|
||||
List[str],
|
||||
List[int],
|
||||
Union[Hypothesis],
|
||||
]
|
||||
]:
|
||||
"""Inference
|
||||
|
||||
Args:
|
||||
speech: Input speech data
|
||||
Returns:
|
||||
text, token, token_int, hyp
|
||||
|
||||
"""
|
||||
assert check_argument_types()
|
||||
|
||||
# Input as audio signal
|
||||
if isinstance(speech, np.ndarray):
|
||||
speech = torch.tensor(speech)
|
||||
|
||||
if self.frontend is not None:
|
||||
feats, feats_len = self.frontend.forward(speech, speech_lengths)
|
||||
feats = to_device(feats, device=self.device)
|
||||
feats_len = feats_len.int()
|
||||
self.asr_model.frontend = None
|
||||
else:
|
||||
feats = speech
|
||||
feats_len = speech_lengths
|
||||
lfr_factor = max(1, (feats.size()[-1] // 80) - 1)
|
||||
feats_raw = feats.clone().to(self.device)
|
||||
batch = {"speech": feats, "speech_lengths": feats_len}
|
||||
|
||||
# a. To device
|
||||
batch = to_device(batch, device=self.device)
|
||||
# b. Forward Encoder
|
||||
_, enc, enc_len = self.asr_model.encode(**batch, ind=self.decoding_ind)
|
||||
if isinstance(enc, tuple):
|
||||
enc = enc[0]
|
||||
assert len(enc) == 1, len(enc)
|
||||
if self.decoding_mode == "model1":
|
||||
predictor_outs = self.asr_model.calc_predictor_mask(enc, enc_len)
|
||||
else:
|
||||
enc, enc_len = self.asr_model.encode2(enc, enc_len, feats_raw, feats_len, ind=self.decoding_ind)
|
||||
predictor_outs = self.asr_model.calc_predictor_mask2(enc, enc_len)
|
||||
|
||||
scama_mask = predictor_outs[4]
|
||||
pre_token_length = predictor_outs[1]
|
||||
pre_acoustic_embeds = predictor_outs[0]
|
||||
maxlen = pre_token_length.sum().item() + self.token_num_relax
|
||||
minlen = max(0, pre_token_length.sum().item() - self.token_num_relax)
|
||||
# c. Passed the encoder result and the beam search
|
||||
nbest_hyps = self.beam_search(
|
||||
x=enc[0], scama_mask=scama_mask, pre_acoustic_embeds=pre_acoustic_embeds, maxlenratio=self.maxlenratio,
|
||||
minlenratio=self.minlenratio, maxlen=int(maxlen), minlen=int(minlen),
|
||||
)
|
||||
|
||||
nbest_hyps = nbest_hyps[: self.nbest]
|
||||
|
||||
results = []
|
||||
for hyp in nbest_hyps:
|
||||
assert isinstance(hyp, (Hypothesis)), type(hyp)
|
||||
|
||||
# remove sos/eos and get results
|
||||
last_pos = -1
|
||||
if isinstance(hyp.yseq, list):
|
||||
token_int = hyp.yseq[1:last_pos]
|
||||
else:
|
||||
token_int = hyp.yseq[1:last_pos].tolist()
|
||||
|
||||
# remove blank symbol id, which is assumed to be 0
|
||||
token_int = list(filter(lambda x: x != 0, token_int))
|
||||
|
||||
# Change integer-ids to tokens
|
||||
token = self.converter.ids2tokens(token_int)
|
||||
|
||||
if self.tokenizer is not None:
|
||||
text = self.tokenizer.tokens2text(token)
|
||||
else:
|
||||
text = None
|
||||
results.append((text, token, token_int, hyp))
|
||||
|
||||
assert check_return_type(results)
|
||||
return results
|
||||
|
||||
|
||||
def inference(
|
||||
maxlenratio: float,
|
||||
minlenratio: float,
|
||||
batch_size: int,
|
||||
beam_size: int,
|
||||
ngpu: int,
|
||||
ctc_weight: float,
|
||||
lm_weight: float,
|
||||
penalty: float,
|
||||
log_level: Union[int, str],
|
||||
data_path_and_name_and_type,
|
||||
asr_train_config: Optional[str],
|
||||
asr_model_file: Optional[str],
|
||||
ngram_file: Optional[str] = None,
|
||||
cmvn_file: Optional[str] = None,
|
||||
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
lm_train_config: Optional[str] = None,
|
||||
lm_file: Optional[str] = None,
|
||||
token_type: Optional[str] = None,
|
||||
key_file: Optional[str] = None,
|
||||
word_lm_train_config: Optional[str] = None,
|
||||
bpemodel: Optional[str] = None,
|
||||
allow_variable_data_keys: bool = False,
|
||||
streaming: bool = False,
|
||||
output_dir: Optional[str] = None,
|
||||
dtype: str = "float32",
|
||||
seed: int = 0,
|
||||
ngram_weight: float = 0.9,
|
||||
nbest: int = 1,
|
||||
num_workers: int = 1,
|
||||
token_num_relax: int = 1,
|
||||
decoding_ind: int = 0,
|
||||
decoding_mode: str = "model1",
|
||||
**kwargs,
|
||||
):
|
||||
inference_pipeline = inference_modelscope(
|
||||
maxlenratio=maxlenratio,
|
||||
minlenratio=minlenratio,
|
||||
batch_size=batch_size,
|
||||
beam_size=beam_size,
|
||||
ngpu=ngpu,
|
||||
ctc_weight=ctc_weight,
|
||||
lm_weight=lm_weight,
|
||||
penalty=penalty,
|
||||
log_level=log_level,
|
||||
asr_train_config=asr_train_config,
|
||||
asr_model_file=asr_model_file,
|
||||
cmvn_file=cmvn_file,
|
||||
raw_inputs=raw_inputs,
|
||||
lm_train_config=lm_train_config,
|
||||
lm_file=lm_file,
|
||||
token_type=token_type,
|
||||
key_file=key_file,
|
||||
word_lm_train_config=word_lm_train_config,
|
||||
bpemodel=bpemodel,
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
streaming=streaming,
|
||||
output_dir=output_dir,
|
||||
dtype=dtype,
|
||||
seed=seed,
|
||||
ngram_weight=ngram_weight,
|
||||
ngram_file=ngram_file,
|
||||
nbest=nbest,
|
||||
num_workers=num_workers,
|
||||
token_num_relax=token_num_relax,
|
||||
decoding_ind=decoding_ind,
|
||||
decoding_mode=decoding_mode,
|
||||
**kwargs,
|
||||
)
|
||||
return inference_pipeline(data_path_and_name_and_type, raw_inputs)
|
||||
|
||||
|
||||
def inference_modelscope(
|
||||
maxlenratio: float,
|
||||
minlenratio: float,
|
||||
batch_size: int,
|
||||
beam_size: int,
|
||||
ngpu: int,
|
||||
ctc_weight: float,
|
||||
lm_weight: float,
|
||||
penalty: float,
|
||||
log_level: Union[int, str],
|
||||
# data_path_and_name_and_type,
|
||||
asr_train_config: Optional[str],
|
||||
asr_model_file: Optional[str],
|
||||
ngram_file: Optional[str] = None,
|
||||
cmvn_file: Optional[str] = None,
|
||||
# raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
lm_train_config: Optional[str] = None,
|
||||
lm_file: Optional[str] = None,
|
||||
token_type: Optional[str] = None,
|
||||
key_file: Optional[str] = None,
|
||||
word_lm_train_config: Optional[str] = None,
|
||||
bpemodel: Optional[str] = None,
|
||||
allow_variable_data_keys: bool = False,
|
||||
streaming: bool = False,
|
||||
output_dir: Optional[str] = None,
|
||||
dtype: str = "float32",
|
||||
seed: int = 0,
|
||||
ngram_weight: float = 0.9,
|
||||
nbest: int = 1,
|
||||
num_workers: int = 1,
|
||||
token_num_relax: int = 1,
|
||||
decoding_ind: int = 0,
|
||||
decoding_mode: str = "model1",
|
||||
param_dict: dict = None,
|
||||
**kwargs,
|
||||
):
|
||||
assert check_argument_types()
|
||||
if batch_size > 1:
|
||||
raise NotImplementedError("batch decoding is not implemented")
|
||||
if word_lm_train_config is not None:
|
||||
raise NotImplementedError("Word LM is not implemented")
|
||||
if ngpu > 1:
|
||||
raise NotImplementedError("only single GPU decoding is supported")
|
||||
|
||||
logging.basicConfig(
|
||||
level=log_level,
|
||||
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
)
|
||||
|
||||
if ngpu >= 1 and torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
# 1. Set random-seed
|
||||
set_all_random_seed(seed)
|
||||
|
||||
# 2. Build speech2text
|
||||
speech2text_kwargs = dict(
|
||||
asr_train_config=asr_train_config,
|
||||
asr_model_file=asr_model_file,
|
||||
cmvn_file=cmvn_file,
|
||||
lm_train_config=lm_train_config,
|
||||
lm_file=lm_file,
|
||||
ngram_file=ngram_file,
|
||||
token_type=token_type,
|
||||
bpemodel=bpemodel,
|
||||
device=device,
|
||||
maxlenratio=maxlenratio,
|
||||
minlenratio=minlenratio,
|
||||
dtype=dtype,
|
||||
beam_size=beam_size,
|
||||
ctc_weight=ctc_weight,
|
||||
lm_weight=lm_weight,
|
||||
ngram_weight=ngram_weight,
|
||||
penalty=penalty,
|
||||
nbest=nbest,
|
||||
streaming=streaming,
|
||||
token_num_relax=token_num_relax,
|
||||
decoding_ind=decoding_ind,
|
||||
decoding_mode=decoding_mode,
|
||||
)
|
||||
speech2text = Speech2Text(**speech2text_kwargs)
|
||||
|
||||
def _forward(data_path_and_name_and_type,
|
||||
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
output_dir_v2: Optional[str] = None,
|
||||
fs: dict = None,
|
||||
param_dict: dict = None,
|
||||
):
|
||||
# 3. Build data-iterator
|
||||
if data_path_and_name_and_type is None and raw_inputs is not None:
|
||||
if isinstance(raw_inputs, torch.Tensor):
|
||||
raw_inputs = raw_inputs.numpy()
|
||||
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
|
||||
loader = ASRTask.build_streaming_iterator(
|
||||
data_path_and_name_and_type,
|
||||
dtype=dtype,
|
||||
fs=fs,
|
||||
batch_size=batch_size,
|
||||
key_file=key_file,
|
||||
num_workers=num_workers,
|
||||
preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
|
||||
collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
inference=True,
|
||||
)
|
||||
|
||||
finish_count = 0
|
||||
file_count = 1
|
||||
# 7 .Start for-loop
|
||||
# FIXME(kamo): The output format should be discussed about
|
||||
asr_result_list = []
|
||||
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
|
||||
if output_path is not None:
|
||||
writer = DatadirWriter(output_path)
|
||||
else:
|
||||
writer = None
|
||||
|
||||
for keys, batch in loader:
|
||||
assert isinstance(batch, dict), type(batch)
|
||||
assert all(isinstance(s, str) for s in keys), keys
|
||||
_bs = len(next(iter(batch.values())))
|
||||
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
||||
#batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
|
||||
|
||||
# N-best list of (text, token, token_int, hyp_object)
|
||||
try:
|
||||
results = speech2text(**batch)
|
||||
except TooShortUttError as e:
|
||||
logging.warning(f"Utterance {keys} {e}")
|
||||
hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
|
||||
results = [[" ", ["sil"], [2], hyp]] * nbest
|
||||
|
||||
# Only supporting batch_size==1
|
||||
key = keys[0]
|
||||
logging.info(f"Utterance: {key}")
|
||||
for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
|
||||
# Create a directory: outdir/{n}best_recog
|
||||
if writer is not None:
|
||||
ibest_writer = writer[f"{n}best_recog"]
|
||||
|
||||
# Write the result to each file
|
||||
ibest_writer["token"][key] = " ".join(token)
|
||||
# ibest_writer["token_int"][key] = " ".join(map(str, token_int))
|
||||
ibest_writer["score"][key] = str(hyp.score)
|
||||
|
||||
if text is not None:
|
||||
text_postprocessed = postprocess_utils.sentence_postprocess(token)
|
||||
item = {'key': key, 'value': text_postprocessed}
|
||||
asr_result_list.append(item)
|
||||
finish_count += 1
|
||||
asr_utils.print_progress(finish_count / file_count)
|
||||
if writer is not None:
|
||||
ibest_writer["text"][key] = text
|
||||
return asr_result_list
|
||||
|
||||
return _forward
|
||||
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = config_argparse.ArgumentParser(
|
||||
description="ASR Decoding",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
|
||||
# Note(kamo): Use '_' instead of '-' as separator.
|
||||
# '-' is confusing if written in yaml.
|
||||
parser.add_argument(
|
||||
"--log_level",
|
||||
type=lambda x: x.upper(),
|
||||
default="INFO",
|
||||
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
|
||||
help="The verbose level of logging",
|
||||
)
|
||||
|
||||
parser.add_argument("--output_dir", type=str, required=True)
|
||||
parser.add_argument(
|
||||
"--ngpu",
|
||||
type=int,
|
||||
default=0,
|
||||
help="The number of gpus. 0 indicates CPU mode",
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
default="float32",
|
||||
choices=["float16", "float32", "float64"],
|
||||
help="Data type",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_workers",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The number of workers used for DataLoader",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group("Input data related")
|
||||
group.add_argument(
|
||||
"--data_path_and_name_and_type",
|
||||
type=str2triple_str,
|
||||
required=False,
|
||||
action="append",
|
||||
)
|
||||
group.add_argument("--raw_inputs", type=list, default=None)
|
||||
# example=[{'key':'EdevDEWdIYQ_0021','file':'/mnt/data/jiangyu.xzy/test_data/speech_io/SPEECHIO_ASR_ZH00007_zhibodaihuo/wav/EdevDEWdIYQ_0021.wav'}])
|
||||
group.add_argument("--key_file", type=str_or_none)
|
||||
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
|
||||
|
||||
group = parser.add_argument_group("The model configuration related")
|
||||
group.add_argument(
|
||||
"--asr_train_config",
|
||||
type=str,
|
||||
help="ASR training configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--asr_model_file",
|
||||
type=str,
|
||||
help="ASR model parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--cmvn_file",
|
||||
type=str,
|
||||
help="Global cmvn file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--lm_train_config",
|
||||
type=str,
|
||||
help="LM training configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--lm_file",
|
||||
type=str,
|
||||
help="LM parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--word_lm_train_config",
|
||||
type=str,
|
||||
help="Word LM training configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--word_lm_file",
|
||||
type=str,
|
||||
help="Word LM parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--ngram_file",
|
||||
type=str,
|
||||
help="N-gram parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--model_tag",
|
||||
type=str,
|
||||
help="Pretrained model tag. If specify this option, *_train_config and "
|
||||
"*_file will be overwritten",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group("Beam-search related")
|
||||
group.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The batch size for inference",
|
||||
)
|
||||
group.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
|
||||
group.add_argument("--beam_size", type=int, default=20, help="Beam size")
|
||||
group.add_argument("--penalty", type=float, default=0.0, help="Insertion penalty")
|
||||
group.add_argument(
|
||||
"--maxlenratio",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Input length ratio to obtain max output length. "
|
||||
"If maxlenratio=0.0 (default), it uses a end-detect "
|
||||
"function "
|
||||
"to automatically find maximum hypothesis lengths."
|
||||
"If maxlenratio<0.0, its absolute value is interpreted"
|
||||
"as a constant max output length",
|
||||
)
|
||||
group.add_argument(
|
||||
"--minlenratio",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Input length ratio to obtain min output length",
|
||||
)
|
||||
group.add_argument(
|
||||
"--ctc_weight",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="CTC weight in joint decoding",
|
||||
)
|
||||
group.add_argument("--lm_weight", type=float, default=1.0, help="RNNLM weight")
|
||||
group.add_argument("--ngram_weight", type=float, default=0.9, help="ngram weight")
|
||||
group.add_argument("--streaming", type=str2bool, default=False)
|
||||
|
||||
group = parser.add_argument_group("Text converter related")
|
||||
group.add_argument(
|
||||
"--token_type",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
choices=["char", "bpe", None],
|
||||
help="The token type for ASR model. "
|
||||
"If not given, refers from the training args",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bpemodel",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
help="The model path of sentencepiece. "
|
||||
"If not given, refers from the training args",
|
||||
)
|
||||
group.add_argument("--token_num_relax", type=int, default=1, help="")
|
||||
group.add_argument("--decoding_ind", type=int, default=0, help="")
|
||||
group.add_argument("--decoding_mode", type=str, default="model1", help="")
|
||||
group.add_argument(
|
||||
"--ctc_weight2",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="CTC weight in joint decoding",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def main(cmd=None):
|
||||
print(get_commandline_args(), file=sys.stderr)
|
||||
parser = get_parser()
|
||||
args = parser.parse_args(cmd)
|
||||
kwargs = vars(args)
|
||||
kwargs.pop("config", None)
|
||||
inference(**kwargs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
50
funasr/export/README.md
Normal file
50
funasr/export/README.md
Normal file
@ -0,0 +1,50 @@
|
||||
|
||||
## Environments
|
||||
funasr 0.1.7
|
||||
python 3.7
|
||||
torch 1.11.0
|
||||
modelscope 1.2.0
|
||||
|
||||
## Install modelscope and funasr
|
||||
|
||||
The installation is the same as [funasr](../../README.md)
|
||||
|
||||
## Export onnx format model
|
||||
Export model from modelscope
|
||||
```python
|
||||
from funasr.export.export_model import ASRModelExportParaformer
|
||||
|
||||
output_dir = "../export" # onnx/torchscripts model save path
|
||||
export_model = ASRModelExportParaformer(cache_dir=output_dir, onnx=True)
|
||||
export_model.export_from_modelscope('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
||||
```
|
||||
|
||||
|
||||
Export model from local path
|
||||
```python
|
||||
from funasr.export.export_model import ASRModelExportParaformer
|
||||
|
||||
output_dir = "../export" # onnx/torchscripts model save path
|
||||
export_model = ASRModelExportParaformer(cache_dir=output_dir, onnx=True)
|
||||
export_model.export_from_local('/root/cache/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
||||
```
|
||||
|
||||
## Export torchscripts format model
|
||||
Export model from modelscope
|
||||
```python
|
||||
from funasr.export.export_model import ASRModelExportParaformer
|
||||
|
||||
output_dir = "../export" # onnx/torchscripts model save path
|
||||
export_model = ASRModelExportParaformer(cache_dir=output_dir, onnx=False)
|
||||
export_model.export_from_modelscope('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
||||
```
|
||||
|
||||
Export model from local path
|
||||
```python
|
||||
from funasr.export.export_model import ASRModelExportParaformer
|
||||
|
||||
output_dir = "../export" # onnx/torchscripts model save path
|
||||
export_model = ASRModelExportParaformer(cache_dir=output_dir, onnx=False)
|
||||
export_model.export_from_local('/root/cache/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
||||
```
|
||||
|
||||
0
funasr/export/__init__.py
Normal file
0
funasr/export/__init__.py
Normal file
120
funasr/export/export_model.py
Normal file
120
funasr/export/export_model.py
Normal file
@ -0,0 +1,120 @@
|
||||
from typing import Union, Dict
|
||||
from pathlib import Path
|
||||
from typeguard import check_argument_types
|
||||
|
||||
import os
|
||||
import logging
|
||||
import torch
|
||||
|
||||
from funasr.bin.asr_inference_paraformer import Speech2Text
|
||||
from funasr.export.models import get_model
|
||||
|
||||
|
||||
|
||||
class ASRModelExportParaformer:
|
||||
def __init__(self, cache_dir: Union[Path, str] = None, onnx: bool = True):
|
||||
assert check_argument_types()
|
||||
if cache_dir is None:
|
||||
cache_dir = Path.home() / "cache" / "export"
|
||||
|
||||
self.cache_dir = Path(cache_dir)
|
||||
self.export_config = dict(
|
||||
feats_dim=560,
|
||||
onnx=False,
|
||||
)
|
||||
logging.info("output dir: {}".format(self.cache_dir))
|
||||
self.onnx = onnx
|
||||
|
||||
def export(
|
||||
self,
|
||||
model: Speech2Text,
|
||||
tag_name: str = None,
|
||||
verbose: bool = False,
|
||||
):
|
||||
|
||||
export_dir = self.cache_dir / tag_name.replace(' ', '-')
|
||||
os.makedirs(export_dir, exist_ok=True)
|
||||
|
||||
# export encoder1
|
||||
self.export_config["model_name"] = "model"
|
||||
model = get_model(
|
||||
model,
|
||||
self.export_config,
|
||||
)
|
||||
self._export_onnx(model, verbose, export_dir)
|
||||
if self.onnx:
|
||||
self._export_onnx(model, verbose, export_dir)
|
||||
else:
|
||||
self._export_torchscripts(model, verbose, export_dir)
|
||||
|
||||
logging.info("output dir: {}".format(export_dir))
|
||||
|
||||
|
||||
def _export_torchscripts(self, model, verbose, path, enc_size=None):
|
||||
if enc_size:
|
||||
dummy_input = model.get_dummy_inputs(enc_size)
|
||||
else:
|
||||
dummy_input = model.get_dummy_inputs_txt()
|
||||
|
||||
# model_script = torch.jit.script(model)
|
||||
model_script = torch.jit.trace(model, dummy_input)
|
||||
model_script.save(os.path.join(path, f'{model.model_name}.torchscripts'))
|
||||
|
||||
def export_from_modelscope(
|
||||
self,
|
||||
tag_name: str = 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
|
||||
):
|
||||
|
||||
from funasr.tasks.asr import ASRTaskParaformer as ASRTask
|
||||
from modelscope.hub.snapshot_download import snapshot_download
|
||||
|
||||
model_dir = snapshot_download(tag_name, cache_dir=self.cache_dir)
|
||||
asr_train_config = os.path.join(model_dir, 'config.yaml')
|
||||
asr_model_file = os.path.join(model_dir, 'model.pb')
|
||||
cmvn_file = os.path.join(model_dir, 'am.mvn')
|
||||
model, asr_train_args = ASRTask.build_model_from_file(
|
||||
asr_train_config, asr_model_file, cmvn_file, 'cpu'
|
||||
)
|
||||
self.export(model, tag_name)
|
||||
|
||||
def export_from_local(
|
||||
self,
|
||||
tag_name: str = '/root/cache/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
|
||||
):
|
||||
|
||||
from funasr.tasks.asr import ASRTaskParaformer as ASRTask
|
||||
|
||||
model_dir = tag_name
|
||||
asr_train_config = os.path.join(model_dir, 'config.yaml')
|
||||
asr_model_file = os.path.join(model_dir, 'model.pb')
|
||||
cmvn_file = os.path.join(model_dir, 'am.mvn')
|
||||
model, asr_train_args = ASRTask.build_model_from_file(
|
||||
asr_train_config, asr_model_file, cmvn_file, 'cpu'
|
||||
)
|
||||
self.export(model, tag_name)
|
||||
|
||||
def _export_onnx(self, model, verbose, path, enc_size=None):
|
||||
if enc_size:
|
||||
dummy_input = model.get_dummy_inputs(enc_size)
|
||||
else:
|
||||
dummy_input = model.get_dummy_inputs()
|
||||
|
||||
# model_script = torch.jit.script(model)
|
||||
model_script = model #torch.jit.trace(model)
|
||||
|
||||
torch.onnx.export(
|
||||
model_script,
|
||||
dummy_input,
|
||||
os.path.join(path, f'{model.model_name}.onnx'),
|
||||
verbose=verbose,
|
||||
opset_version=12,
|
||||
input_names=model.get_input_names(),
|
||||
output_names=model.get_output_names(),
|
||||
dynamic_axes=model.get_dynamic_axes()
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
output_dir = "../export"
|
||||
export_model = ASRModelExportParaformer(cache_dir=output_dir, onnx=False)
|
||||
export_model.export_from_modelscope('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
||||
# export_model.export_from_local('/root/cache/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')
|
||||
91
funasr/export/models/__init__.py
Normal file
91
funasr/export/models/__init__.py
Normal file
@ -0,0 +1,91 @@
|
||||
# from .ctc import CTC
|
||||
# from .joint_network import JointNetwork
|
||||
#
|
||||
# # encoder
|
||||
# from espnet2.asr.encoder.rnn_encoder import RNNEncoder as espnetRNNEncoder
|
||||
# from espnet2.asr.encoder.vgg_rnn_encoder import VGGRNNEncoder as espnetVGGRNNEncoder
|
||||
# from espnet2.asr.encoder.contextual_block_transformer_encoder import ContextualBlockTransformerEncoder as espnetContextualTransformer
|
||||
# from espnet2.asr.encoder.contextual_block_conformer_encoder import ContextualBlockConformerEncoder as espnetContextualConformer
|
||||
# from espnet2.asr.encoder.transformer_encoder import TransformerEncoder as espnetTransformerEncoder
|
||||
# from espnet2.asr.encoder.conformer_encoder import ConformerEncoder as espnetConformerEncoder
|
||||
# from funasr.export.models.encoder.rnn import RNNEncoder
|
||||
# from funasr.export.models.encoders import TransformerEncoder
|
||||
# from funasr.export.models.encoders import ConformerEncoder
|
||||
# from funasr.export.models.encoder.contextual_block_xformer import ContextualBlockXformerEncoder
|
||||
#
|
||||
# # decoder
|
||||
# from espnet2.asr.decoder.rnn_decoder import RNNDecoder as espnetRNNDecoder
|
||||
# from espnet2.asr.transducer.transducer_decoder import TransducerDecoder as espnetTransducerDecoder
|
||||
# from funasr.export.models.decoder.rnn import (
|
||||
# RNNDecoder
|
||||
# )
|
||||
# from funasr.export.models.decoders import XformerDecoder
|
||||
# from funasr.export.models.decoders import TransducerDecoder
|
||||
#
|
||||
# # lm
|
||||
# from espnet2.lm.seq_rnn_lm import SequentialRNNLM as espnetSequentialRNNLM
|
||||
# from espnet2.lm.transformer_lm import TransformerLM as espnetTransformerLM
|
||||
# from .language_models.seq_rnn import SequentialRNNLM
|
||||
# from .language_models.transformer import TransformerLM
|
||||
#
|
||||
# # frontend
|
||||
# from espnet2.asr.frontend.s3prl import S3prlFrontend as espnetS3PRLModel
|
||||
# from .frontends.s3prl import S3PRLModel
|
||||
#
|
||||
# from espnet2.asr.encoder.sanm_encoder import SANMEncoder_tf, SANMEncoderChunkOpt_tf
|
||||
# from espnet_onnx.export.asr.models.encoders.transformer_sanm import TransformerEncoderSANM_tf
|
||||
# from espnet2.asr.decoder.transformer_decoder import FsmnDecoderSCAMAOpt_tf
|
||||
# from funasr.export.models.decoders import XformerDecoderSANM
|
||||
|
||||
from funasr.models.e2e_asr_paraformer import Paraformer
|
||||
from funasr.export.models.e2e_asr_paraformer import Paraformer as Paraformer_export
|
||||
|
||||
def get_model(model, export_config=None):
|
||||
|
||||
if isinstance(model, Paraformer):
|
||||
return Paraformer_export(model, **export_config)
|
||||
else:
|
||||
raise "The model is not exist!"
|
||||
|
||||
|
||||
# def get_encoder(model, frontend, preencoder, predictor=None, export_config=None):
|
||||
# if isinstance(model, espnetRNNEncoder) or isinstance(model, espnetVGGRNNEncoder):
|
||||
# return RNNEncoder(model, frontend, preencoder, **export_config)
|
||||
# elif isinstance(model, espnetContextualTransformer) or isinstance(model, espnetContextualConformer):
|
||||
# return ContextualBlockXformerEncoder(model, **export_config)
|
||||
# elif isinstance(model, espnetTransformerEncoder):
|
||||
# return TransformerEncoder(model, frontend, preencoder, **export_config)
|
||||
# elif isinstance(model, espnetConformerEncoder):
|
||||
# return ConformerEncoder(model, frontend, preencoder, **export_config)
|
||||
# elif isinstance(model, SANMEncoder_tf) or isinstance(model, SANMEncoderChunkOpt_tf):
|
||||
# return TransformerEncoderSANM_tf(model, frontend, preencoder, predictor, **export_config)
|
||||
# else:
|
||||
# raise "The model is not exist!"
|
||||
|
||||
|
||||
#
|
||||
# def get_decoder(model, export_config):
|
||||
# if isinstance(model, espnetRNNDecoder):
|
||||
# return RNNDecoder(model, **export_config)
|
||||
# elif isinstance(model, espnetTransducerDecoder):
|
||||
# return TransducerDecoder(model, **export_config)
|
||||
# elif isinstance(model, FsmnDecoderSCAMAOpt_tf):
|
||||
# return XformerDecoderSANM(model, **export_config)
|
||||
# else:
|
||||
# return XformerDecoder(model, **export_config)
|
||||
#
|
||||
#
|
||||
# def get_lm(model, export_config):
|
||||
# if isinstance(model, espnetSequentialRNNLM):
|
||||
# return SequentialRNNLM(model, **export_config)
|
||||
# elif isinstance(model, espnetTransformerLM):
|
||||
# return TransformerLM(model, **export_config)
|
||||
#
|
||||
#
|
||||
# def get_frontend_models(model, export_config):
|
||||
# if isinstance(model, espnetS3PRLModel):
|
||||
# return S3PRLModel(model, **export_config)
|
||||
# else:
|
||||
# return None
|
||||
#
|
||||
|
||||
0
funasr/export/models/decoder/__init__.py
Normal file
0
funasr/export/models/decoder/__init__.py
Normal file
159
funasr/export/models/decoder/sanm_decoder.py
Normal file
159
funasr/export/models/decoder/sanm_decoder.py
Normal file
@ -0,0 +1,159 @@
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
from funasr.export.utils.torch_function import MakePadMask
|
||||
from funasr.export.utils.torch_function import sequence_mask
|
||||
|
||||
from funasr.modules.attention import MultiHeadedAttentionSANMDecoder
|
||||
from funasr.export.models.modules.multihead_att import MultiHeadedAttentionSANMDecoder as MultiHeadedAttentionSANMDecoder_export
|
||||
from funasr.modules.attention import MultiHeadedAttentionCrossAtt
|
||||
from funasr.export.models.modules.multihead_att import MultiHeadedAttentionCrossAtt as MultiHeadedAttentionCrossAtt_export
|
||||
from funasr.modules.positionwise_feed_forward import PositionwiseFeedForwardDecoderSANM
|
||||
from funasr.export.models.modules.feedforward import PositionwiseFeedForwardDecoderSANM as PositionwiseFeedForwardDecoderSANM_export
|
||||
from funasr.export.models.modules.decoder_layer import DecoderLayerSANM as DecoderLayerSANM_export
|
||||
|
||||
|
||||
class ParaformerSANMDecoder(nn.Module):
|
||||
def __init__(self, model,
|
||||
max_seq_len=512,
|
||||
model_name='decoder',
|
||||
onnx: bool = True,):
|
||||
super().__init__()
|
||||
# self.embed = model.embed #Embedding(model.embed, max_seq_len)
|
||||
self.model = model
|
||||
if onnx:
|
||||
self.make_pad_mask = MakePadMask(max_seq_len, flip=False)
|
||||
else:
|
||||
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
|
||||
|
||||
for i, d in enumerate(self.model.decoders):
|
||||
if isinstance(d.feed_forward, PositionwiseFeedForwardDecoderSANM):
|
||||
d.feed_forward = PositionwiseFeedForwardDecoderSANM_export(d.feed_forward)
|
||||
if isinstance(d.self_attn, MultiHeadedAttentionSANMDecoder):
|
||||
d.self_attn = MultiHeadedAttentionSANMDecoder_export(d.self_attn)
|
||||
if isinstance(d.src_attn, MultiHeadedAttentionCrossAtt):
|
||||
d.src_attn = MultiHeadedAttentionCrossAtt_export(d.src_attn)
|
||||
self.model.decoders[i] = DecoderLayerSANM_export(d)
|
||||
|
||||
if self.model.decoders2 is not None:
|
||||
for i, d in enumerate(self.model.decoders2):
|
||||
if isinstance(d.feed_forward, PositionwiseFeedForwardDecoderSANM):
|
||||
d.feed_forward = PositionwiseFeedForwardDecoderSANM_export(d.feed_forward)
|
||||
if isinstance(d.self_attn, MultiHeadedAttentionSANMDecoder):
|
||||
d.self_attn = MultiHeadedAttentionSANMDecoder_export(d.self_attn)
|
||||
self.model.decoders2[i] = DecoderLayerSANM_export(d)
|
||||
|
||||
for i, d in enumerate(self.model.decoders3):
|
||||
if isinstance(d.feed_forward, PositionwiseFeedForwardDecoderSANM):
|
||||
d.feed_forward = PositionwiseFeedForwardDecoderSANM_export(d.feed_forward)
|
||||
self.model.decoders3[i] = DecoderLayerSANM_export(d)
|
||||
|
||||
self.output_layer = model.output_layer
|
||||
self.after_norm = model.after_norm
|
||||
self.model_name = model_name
|
||||
|
||||
|
||||
def prepare_mask(self, mask):
|
||||
mask_3d_btd = mask[:, :, None]
|
||||
if len(mask.shape) == 2:
|
||||
mask_4d_bhlt = 1 - mask[:, None, None, :]
|
||||
elif len(mask.shape) == 3:
|
||||
mask_4d_bhlt = 1 - mask[:, None, :]
|
||||
mask_4d_bhlt = mask_4d_bhlt * -10000.0
|
||||
|
||||
return mask_3d_btd, mask_4d_bhlt
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hs_pad: torch.Tensor,
|
||||
hlens: torch.Tensor,
|
||||
ys_in_pad: torch.Tensor,
|
||||
ys_in_lens: torch.Tensor,
|
||||
):
|
||||
|
||||
tgt = ys_in_pad
|
||||
tgt_mask = self.make_pad_mask(ys_in_lens)
|
||||
tgt_mask, _ = self.prepare_mask(tgt_mask)
|
||||
# tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]
|
||||
|
||||
memory = hs_pad
|
||||
memory_mask = self.make_pad_mask(hlens)
|
||||
_, memory_mask = self.prepare_mask(memory_mask)
|
||||
# memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
|
||||
|
||||
x = tgt
|
||||
x, tgt_mask, memory, memory_mask, _ = self.model.decoders(
|
||||
x, tgt_mask, memory, memory_mask
|
||||
)
|
||||
if self.model.decoders2 is not None:
|
||||
x, tgt_mask, memory, memory_mask, _ = self.model.decoders2(
|
||||
x, tgt_mask, memory, memory_mask
|
||||
)
|
||||
x, tgt_mask, memory, memory_mask, _ = self.model.decoders3(
|
||||
x, tgt_mask, memory, memory_mask
|
||||
)
|
||||
x = self.after_norm(x)
|
||||
x = self.output_layer(x)
|
||||
|
||||
return x, ys_in_lens
|
||||
|
||||
|
||||
def get_dummy_inputs(self, enc_size):
|
||||
tgt = torch.LongTensor([0]).unsqueeze(0)
|
||||
memory = torch.randn(1, 100, enc_size)
|
||||
pre_acoustic_embeds = torch.randn(1, 1, enc_size)
|
||||
cache_num = len(self.model.decoders) + len(self.model.decoders2)
|
||||
cache = [
|
||||
torch.zeros((1, self.model.decoders[0].size, self.model.decoders[0].self_attn.kernel_size))
|
||||
for _ in range(cache_num)
|
||||
]
|
||||
return (tgt, memory, pre_acoustic_embeds, cache)
|
||||
|
||||
def is_optimizable(self):
|
||||
return True
|
||||
|
||||
def get_input_names(self):
|
||||
cache_num = len(self.model.decoders) + len(self.model.decoders2)
|
||||
return ['tgt', 'memory', 'pre_acoustic_embeds'] \
|
||||
+ ['cache_%d' % i for i in range(cache_num)]
|
||||
|
||||
def get_output_names(self):
|
||||
cache_num = len(self.model.decoders) + len(self.model.decoders2)
|
||||
return ['y'] \
|
||||
+ ['out_cache_%d' % i for i in range(cache_num)]
|
||||
|
||||
def get_dynamic_axes(self):
|
||||
ret = {
|
||||
'tgt': {
|
||||
0: 'tgt_batch',
|
||||
1: 'tgt_length'
|
||||
},
|
||||
'memory': {
|
||||
0: 'memory_batch',
|
||||
1: 'memory_length'
|
||||
},
|
||||
'pre_acoustic_embeds': {
|
||||
0: 'acoustic_embeds_batch',
|
||||
1: 'acoustic_embeds_length',
|
||||
}
|
||||
}
|
||||
cache_num = len(self.model.decoders) + len(self.model.decoders2)
|
||||
ret.update({
|
||||
'cache_%d' % d: {
|
||||
0: 'cache_%d_batch' % d,
|
||||
2: 'cache_%d_length' % d
|
||||
}
|
||||
for d in range(cache_num)
|
||||
})
|
||||
return ret
|
||||
|
||||
def get_model_config(self, path):
|
||||
return {
|
||||
"dec_type": "XformerDecoder",
|
||||
"model_path": os.path.join(path, f'{self.model_name}.onnx'),
|
||||
"n_layers": len(self.model.decoders) + len(self.model.decoders2),
|
||||
"odim": self.model.decoders[0].size
|
||||
}
|
||||
102
funasr/export/models/e2e_asr_paraformer.py
Normal file
102
funasr/export/models/e2e_asr_paraformer.py
Normal file
@ -0,0 +1,102 @@
|
||||
import logging
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from funasr.export.utils.torch_function import MakePadMask
|
||||
from funasr.export.utils.torch_function import sequence_mask
|
||||
from funasr.models.encoder.sanm_encoder import SANMEncoder
|
||||
from funasr.export.models.encoder.sanm_encoder import SANMEncoder as SANMEncoder_export
|
||||
from funasr.models.predictor.cif import CifPredictorV2
|
||||
from funasr.export.models.predictor.cif import CifPredictorV2 as CifPredictorV2_export
|
||||
from funasr.models.decoder.sanm_decoder import ParaformerSANMDecoder
|
||||
from funasr.export.models.decoder.sanm_decoder import ParaformerSANMDecoder as ParaformerSANMDecoder_export
|
||||
|
||||
class Paraformer(nn.Module):
|
||||
"""
|
||||
Author: Speech Lab, Alibaba Group, China
|
||||
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
|
||||
https://arxiv.org/abs/2206.08317
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
max_seq_len=512,
|
||||
feats_dim=560,
|
||||
model_name='model',
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
onnx = False
|
||||
if "onnx" in kwargs:
|
||||
onnx = kwargs["onnx"]
|
||||
if isinstance(model.encoder, SANMEncoder):
|
||||
self.encoder = SANMEncoder_export(model.encoder, onnx=onnx)
|
||||
if isinstance(model.predictor, CifPredictorV2):
|
||||
self.predictor = CifPredictorV2_export(model.predictor)
|
||||
if isinstance(model.decoder, ParaformerSANMDecoder):
|
||||
self.decoder = ParaformerSANMDecoder_export(model.decoder, onnx=onnx)
|
||||
|
||||
self.feats_dim = feats_dim
|
||||
self.model_name = model_name
|
||||
|
||||
if onnx:
|
||||
self.make_pad_mask = MakePadMask(max_seq_len, flip=False)
|
||||
else:
|
||||
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
):
|
||||
# a. To device
|
||||
batch = {"speech": speech, "speech_lengths": speech_lengths}
|
||||
# batch = to_device(batch, device=self.device)
|
||||
|
||||
enc, enc_len = self.encoder(**batch)
|
||||
mask = self.make_pad_mask(enc_len)[:, None, :]
|
||||
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor(enc, mask)
|
||||
pre_token_length = pre_token_length.round().long()
|
||||
|
||||
decoder_out, _ = self.decoder(enc, enc_len, pre_acoustic_embeds, pre_token_length)
|
||||
decoder_out = torch.log_softmax(decoder_out, dim=-1)
|
||||
# sample_ids = decoder_out.argmax(dim=-1)
|
||||
|
||||
return decoder_out, pre_token_length
|
||||
|
||||
def get_dummy_inputs(self):
|
||||
speech = torch.randn(2, 30, self.feats_dim)
|
||||
speech_lengths = torch.tensor([6, 30], dtype=torch.int32)
|
||||
return (speech, speech_lengths)
|
||||
|
||||
def get_dummy_inputs_txt(self, txt_file: str = "/mnt/workspace/data_fbank/0207/12345.wav.fea.txt"):
|
||||
import numpy as np
|
||||
fbank = np.loadtxt(txt_file)
|
||||
fbank_lengths = np.array([fbank.shape[0], ], dtype=np.int32)
|
||||
speech = torch.from_numpy(fbank[None, :, :].astype(np.float32))
|
||||
speech_lengths = torch.from_numpy(fbank_lengths.astype(np.int32))
|
||||
return (speech, speech_lengths)
|
||||
|
||||
def get_input_names(self):
|
||||
return ['speech', 'speech_lengths']
|
||||
|
||||
def get_output_names(self):
|
||||
return ['logits', 'token_num']
|
||||
|
||||
def get_dynamic_axes(self):
|
||||
return {
|
||||
'speech': {
|
||||
0: 'batch_size',
|
||||
1: 'feats_length'
|
||||
},
|
||||
'speech_lengths': {
|
||||
0: 'batch_size',
|
||||
},
|
||||
'logits': {
|
||||
0: 'batch_size',
|
||||
1: 'logits_length'
|
||||
},
|
||||
}
|
||||
0
funasr/export/models/encoder/__init__.py
Normal file
0
funasr/export/models/encoder/__init__.py
Normal file
109
funasr/export/models/encoder/sanm_encoder.py
Normal file
109
funasr/export/models/encoder/sanm_encoder.py
Normal file
@ -0,0 +1,109 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from funasr.export.utils.torch_function import MakePadMask
|
||||
from funasr.export.utils.torch_function import sequence_mask
|
||||
from funasr.modules.attention import MultiHeadedAttentionSANM
|
||||
from funasr.export.models.modules.multihead_att import MultiHeadedAttentionSANM as MultiHeadedAttentionSANM_export
|
||||
from funasr.export.models.modules.encoder_layer import EncoderLayerSANM as EncoderLayerSANM_export
|
||||
from funasr.modules.positionwise_feed_forward import PositionwiseFeedForward
|
||||
from funasr.export.models.modules.feedforward import PositionwiseFeedForward as PositionwiseFeedForward_export
|
||||
|
||||
class SANMEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
max_seq_len=512,
|
||||
feats_dim=560,
|
||||
model_name='encoder',
|
||||
onnx: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.embed = model.embed
|
||||
self.model = model
|
||||
self.feats_dim = feats_dim
|
||||
self._output_size = model._output_size
|
||||
|
||||
if onnx:
|
||||
self.make_pad_mask = MakePadMask(max_seq_len, flip=False)
|
||||
else:
|
||||
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
|
||||
|
||||
if hasattr(model, 'encoders0'):
|
||||
for i, d in enumerate(self.model.encoders0):
|
||||
if isinstance(d.self_attn, MultiHeadedAttentionSANM):
|
||||
d.self_attn = MultiHeadedAttentionSANM_export(d.self_attn)
|
||||
if isinstance(d.feed_forward, PositionwiseFeedForward):
|
||||
d.feed_forward = PositionwiseFeedForward_export(d.feed_forward)
|
||||
self.model.encoders0[i] = EncoderLayerSANM_export(d)
|
||||
|
||||
for i, d in enumerate(self.model.encoders):
|
||||
if isinstance(d.self_attn, MultiHeadedAttentionSANM):
|
||||
d.self_attn = MultiHeadedAttentionSANM_export(d.self_attn)
|
||||
if isinstance(d.feed_forward, PositionwiseFeedForward):
|
||||
d.feed_forward = PositionwiseFeedForward_export(d.feed_forward)
|
||||
self.model.encoders[i] = EncoderLayerSANM_export(d)
|
||||
|
||||
self.model_name = model_name
|
||||
self.num_heads = model.encoders[0].self_attn.h
|
||||
self.hidden_size = model.encoders[0].self_attn.linear_out.out_features
|
||||
|
||||
|
||||
def prepare_mask(self, mask):
|
||||
mask_3d_btd = mask[:, :, None]
|
||||
if len(mask.shape) == 2:
|
||||
mask_4d_bhlt = 1 - mask[:, None, None, :]
|
||||
elif len(mask.shape) == 3:
|
||||
mask_4d_bhlt = 1 - mask[:, None, :]
|
||||
mask_4d_bhlt = mask_4d_bhlt * -10000.0
|
||||
|
||||
return mask_3d_btd, mask_4d_bhlt
|
||||
|
||||
def forward(self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
):
|
||||
speech = speech * self._output_size ** 0.5
|
||||
mask = self.make_pad_mask(speech_lengths)
|
||||
mask = self.prepare_mask(mask)
|
||||
if self.embed is None:
|
||||
xs_pad = speech
|
||||
else:
|
||||
xs_pad = self.embed(speech)
|
||||
|
||||
encoder_outs = self.model.encoders0(xs_pad, mask)
|
||||
xs_pad, masks = encoder_outs[0], encoder_outs[1]
|
||||
|
||||
encoder_outs = self.model.encoders(xs_pad, mask)
|
||||
xs_pad, masks = encoder_outs[0], encoder_outs[1]
|
||||
|
||||
xs_pad = self.model.after_norm(xs_pad)
|
||||
|
||||
return xs_pad, speech_lengths
|
||||
|
||||
def get_output_size(self):
|
||||
return self.model.encoders[0].size
|
||||
|
||||
def get_dummy_inputs(self):
|
||||
feats = torch.randn(1, 100, self.feats_dim)
|
||||
return (feats)
|
||||
|
||||
def get_input_names(self):
|
||||
return ['feats']
|
||||
|
||||
def get_output_names(self):
|
||||
return ['encoder_out', 'encoder_out_lens', 'predictor_weight']
|
||||
|
||||
def get_dynamic_axes(self):
|
||||
return {
|
||||
'feats': {
|
||||
1: 'feats_length'
|
||||
},
|
||||
'encoder_out': {
|
||||
1: 'enc_out_length'
|
||||
},
|
||||
'predictor_weight':{
|
||||
1: 'pre_out_length'
|
||||
}
|
||||
|
||||
}
|
||||
0
funasr/export/models/modules/__init__.py
Normal file
0
funasr/export/models/modules/__init__.py
Normal file
43
funasr/export/models/modules/decoder_layer.py
Normal file
43
funasr/export/models/modules/decoder_layer.py
Normal file
@ -0,0 +1,43 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class DecoderLayerSANM(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model
|
||||
):
|
||||
super().__init__()
|
||||
self.self_attn = model.self_attn
|
||||
self.src_attn = model.src_attn
|
||||
self.feed_forward = model.feed_forward
|
||||
self.norm1 = model.norm1
|
||||
self.norm2 = model.norm2 if hasattr(model, 'norm2') else None
|
||||
self.norm3 = model.norm3 if hasattr(model, 'norm3') else None
|
||||
self.size = model.size
|
||||
|
||||
|
||||
def forward(self, tgt, tgt_mask, memory, memory_mask=None, cache=None):
|
||||
|
||||
residual = tgt
|
||||
tgt = self.norm1(tgt)
|
||||
tgt = self.feed_forward(tgt)
|
||||
|
||||
x = tgt
|
||||
if self.self_attn is not None:
|
||||
tgt = self.norm2(tgt)
|
||||
x, cache = self.self_attn(tgt, tgt_mask, cache=cache)
|
||||
x = residual + x
|
||||
|
||||
if self.src_attn is not None:
|
||||
residual = x
|
||||
x = self.norm3(x)
|
||||
x = residual + self.src_attn(x, memory, memory_mask)
|
||||
|
||||
|
||||
return x, tgt_mask, memory, memory_mask, cache
|
||||
|
||||
37
funasr/export/models/modules/encoder_layer.py
Normal file
37
funasr/export/models/modules/encoder_layer.py
Normal file
@ -0,0 +1,37 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class EncoderLayerSANM(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
):
|
||||
"""Construct an EncoderLayer object."""
|
||||
super().__init__()
|
||||
self.self_attn = model.self_attn
|
||||
self.feed_forward = model.feed_forward
|
||||
self.norm1 = model.norm1
|
||||
self.norm2 = model.norm2
|
||||
self.size = model.size
|
||||
|
||||
def forward(self, x, mask):
|
||||
|
||||
residual = x
|
||||
x = self.norm1(x)
|
||||
x = self.self_attn(x, mask)
|
||||
if x.size(2) == residual.size(2):
|
||||
x = x + residual
|
||||
residual = x
|
||||
x = self.norm2(x)
|
||||
x = self.feed_forward(x)
|
||||
if x.size(2) == residual.size(2):
|
||||
x = x + residual
|
||||
|
||||
return x, mask
|
||||
|
||||
|
||||
|
||||
31
funasr/export/models/modules/feedforward.py
Normal file
31
funasr/export/models/modules/feedforward.py
Normal file
@ -0,0 +1,31 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class PositionwiseFeedForward(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.w_1 = model.w_1
|
||||
self.w_2 = model.w_2
|
||||
self.activation = model.activation
|
||||
|
||||
def forward(self, x):
|
||||
x = self.activation(self.w_1(x))
|
||||
x = self.w_2(x)
|
||||
return x
|
||||
|
||||
|
||||
class PositionwiseFeedForwardDecoderSANM(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.w_1 = model.w_1
|
||||
self.w_2 = model.w_2
|
||||
self.activation = model.activation
|
||||
self.norm = model.norm
|
||||
|
||||
def forward(self, x):
|
||||
x = self.activation(self.w_1(x))
|
||||
x = self.w_2(self.norm(x))
|
||||
return x
|
||||
135
funasr/export/models/modules/multihead_att.py
Normal file
135
funasr/export/models/modules/multihead_att.py
Normal file
@ -0,0 +1,135 @@
|
||||
import os
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
class MultiHeadedAttentionSANM(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.d_k = model.d_k
|
||||
self.h = model.h
|
||||
self.linear_out = model.linear_out
|
||||
self.linear_q_k_v = model.linear_q_k_v
|
||||
self.fsmn_block = model.fsmn_block
|
||||
self.pad_fn = model.pad_fn
|
||||
|
||||
self.attn = None
|
||||
self.all_head_size = self.h * self.d_k
|
||||
|
||||
def forward(self, x, mask):
|
||||
mask_3d_btd, mask_4d_bhlt = mask
|
||||
q_h, k_h, v_h, v = self.forward_qkv(x)
|
||||
fsmn_memory = self.forward_fsmn(v, mask_3d_btd)
|
||||
q_h = q_h * self.d_k**(-0.5)
|
||||
scores = torch.matmul(q_h, k_h.transpose(-2, -1))
|
||||
att_outs = self.forward_attention(v_h, scores, mask_4d_bhlt)
|
||||
return att_outs + fsmn_memory
|
||||
|
||||
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
||||
new_x_shape = x.size()[:-1] + (self.h, self.d_k)
|
||||
x = x.view(new_x_shape)
|
||||
return x.permute(0, 2, 1, 3)
|
||||
|
||||
def forward_qkv(self, x):
|
||||
|
||||
q_k_v = self.linear_q_k_v(x)
|
||||
q, k, v = torch.split(q_k_v, int(self.h * self.d_k), dim=-1)
|
||||
q_h = self.transpose_for_scores(q)
|
||||
k_h = self.transpose_for_scores(k)
|
||||
v_h = self.transpose_for_scores(v)
|
||||
return q_h, k_h, v_h, v
|
||||
|
||||
def forward_fsmn(self, inputs, mask):
|
||||
|
||||
# b, t, d = inputs.size()
|
||||
# mask = torch.reshape(mask, (b, -1, 1))
|
||||
inputs = inputs * mask
|
||||
x = inputs.transpose(1, 2)
|
||||
x = self.pad_fn(x)
|
||||
x = self.fsmn_block(x)
|
||||
x = x.transpose(1, 2)
|
||||
x = x + inputs
|
||||
x = x * mask
|
||||
return x
|
||||
|
||||
|
||||
def forward_attention(self, value, scores, mask):
|
||||
scores = scores + mask
|
||||
|
||||
self.attn = torch.softmax(scores, dim=-1)
|
||||
context_layer = torch.matmul(self.attn, value) # (batch, head, time1, d_k)
|
||||
|
||||
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||||
context_layer = context_layer.view(new_context_layer_shape)
|
||||
return self.linear_out(context_layer) # (batch, time1, d_model)
|
||||
|
||||
class MultiHeadedAttentionSANMDecoder(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.fsmn_block = model.fsmn_block
|
||||
self.pad_fn = model.pad_fn
|
||||
self.kernel_size = model.kernel_size
|
||||
self.attn = None
|
||||
|
||||
def forward(self, inputs, mask, cache=None):
|
||||
|
||||
# b, t, d = inputs.size()
|
||||
# mask = torch.reshape(mask, (b, -1, 1))
|
||||
inputs = inputs * mask
|
||||
|
||||
x = inputs.transpose(1, 2)
|
||||
if cache is None:
|
||||
x = self.pad_fn(x)
|
||||
else:
|
||||
x = torch.cat((cache[:, :, 1:], x), dim=2)
|
||||
cache = x
|
||||
x = self.fsmn_block(x)
|
||||
x = x.transpose(1, 2)
|
||||
|
||||
x = x + inputs
|
||||
x = x * mask
|
||||
return x, cache
|
||||
|
||||
class MultiHeadedAttentionCrossAtt(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.d_k = model.d_k
|
||||
self.h = model.h
|
||||
self.linear_q = model.linear_q
|
||||
self.linear_k_v = model.linear_k_v
|
||||
self.linear_out = model.linear_out
|
||||
self.attn = None
|
||||
self.all_head_size = self.h * self.d_k
|
||||
|
||||
def forward(self, x, memory, memory_mask):
|
||||
q, k, v = self.forward_qkv(x, memory)
|
||||
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
||||
return self.forward_attention(v, scores, memory_mask)
|
||||
|
||||
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
||||
new_x_shape = x.size()[:-1] + (self.h, self.d_k)
|
||||
x = x.view(new_x_shape)
|
||||
return x.permute(0, 2, 1, 3)
|
||||
|
||||
def forward_qkv(self, x, memory):
|
||||
q = self.linear_q(x)
|
||||
|
||||
k_v = self.linear_k_v(memory)
|
||||
k, v = torch.split(k_v, int(self.h * self.d_k), dim=-1)
|
||||
q = self.transpose_for_scores(q)
|
||||
k = self.transpose_for_scores(k)
|
||||
v = self.transpose_for_scores(v)
|
||||
return q, k, v
|
||||
|
||||
def forward_attention(self, value, scores, mask):
|
||||
scores = scores + mask
|
||||
|
||||
self.attn = torch.softmax(scores, dim=-1)
|
||||
context_layer = torch.matmul(self.attn, value) # (batch, head, time1, d_k)
|
||||
|
||||
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||||
context_layer = context_layer.view(new_context_layer_shape)
|
||||
return self.linear_out(context_layer) # (batch, time1, d_model)
|
||||
0
funasr/export/models/predictor/__init__.py
Normal file
0
funasr/export/models/predictor/__init__.py
Normal file
168
funasr/export/models/predictor/cif.py
Normal file
168
funasr/export/models/predictor/cif.py
Normal file
@ -0,0 +1,168 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
import torch
|
||||
from torch import nn
|
||||
import logging
|
||||
import numpy as np
|
||||
|
||||
|
||||
def sequence_mask(lengths, maxlen=None, dtype=torch.float32, device=None):
|
||||
if maxlen is None:
|
||||
maxlen = lengths.max()
|
||||
row_vector = torch.arange(0, maxlen, 1).to(lengths.device)
|
||||
matrix = torch.unsqueeze(lengths, dim=-1)
|
||||
mask = row_vector < matrix
|
||||
mask = mask.detach()
|
||||
|
||||
return mask.type(dtype).to(device) if device is not None else mask.type(dtype)
|
||||
|
||||
|
||||
class CifPredictorV2(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
|
||||
self.pad = model.pad
|
||||
self.cif_conv1d = model.cif_conv1d
|
||||
self.cif_output = model.cif_output
|
||||
self.threshold = model.threshold
|
||||
self.smooth_factor = model.smooth_factor
|
||||
self.noise_threshold = model.noise_threshold
|
||||
self.tail_threshold = model.tail_threshold
|
||||
|
||||
def forward(self, hidden: torch.Tensor,
|
||||
mask: torch.Tensor,
|
||||
):
|
||||
h = hidden
|
||||
context = h.transpose(1, 2)
|
||||
queries = self.pad(context)
|
||||
output = torch.relu(self.cif_conv1d(queries))
|
||||
output = output.transpose(1, 2)
|
||||
|
||||
output = self.cif_output(output)
|
||||
alphas = torch.sigmoid(output)
|
||||
alphas = torch.nn.functional.relu(alphas * self.smooth_factor - self.noise_threshold)
|
||||
mask = mask.transpose(-1, -2).float()
|
||||
alphas = alphas * mask
|
||||
|
||||
alphas = alphas.squeeze(-1)
|
||||
|
||||
token_num = alphas.sum(-1)
|
||||
|
||||
acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold)
|
||||
|
||||
return acoustic_embeds, token_num, alphas, cif_peak
|
||||
|
||||
def tail_process_fn(self, hidden, alphas, token_num=None, mask=None):
|
||||
b, t, d = hidden.size()
|
||||
tail_threshold = self.tail_threshold
|
||||
|
||||
zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device)
|
||||
ones_t = torch.ones_like(zeros_t)
|
||||
mask_1 = torch.cat([mask, zeros_t], dim=1)
|
||||
mask_2 = torch.cat([ones_t, mask], dim=1)
|
||||
mask = mask_2 - mask_1
|
||||
tail_threshold = mask * tail_threshold
|
||||
alphas = torch.cat([alphas, tail_threshold], dim=1)
|
||||
|
||||
zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device)
|
||||
hidden = torch.cat([hidden, zeros], dim=1)
|
||||
token_num = alphas.sum(dim=-1)
|
||||
token_num_floor = torch.floor(token_num)
|
||||
|
||||
return hidden, alphas, token_num_floor
|
||||
|
||||
@torch.jit.script
|
||||
def cif(hidden, alphas, threshold: float):
|
||||
batch_size, len_time, hidden_size = hidden.size()
|
||||
threshold = torch.tensor([threshold], dtype=alphas.dtype).to(alphas.device)
|
||||
|
||||
# loop varss
|
||||
integrate = torch.zeros([batch_size], device=hidden.device)
|
||||
frame = torch.zeros([batch_size, hidden_size], device=hidden.device)
|
||||
# intermediate vars along time
|
||||
list_fires = []
|
||||
list_frames = []
|
||||
|
||||
for t in range(len_time):
|
||||
alpha = alphas[:, t]
|
||||
distribution_completion = torch.ones([batch_size], device=hidden.device) - integrate
|
||||
|
||||
integrate += alpha
|
||||
list_fires.append(integrate)
|
||||
|
||||
fire_place = integrate >= threshold
|
||||
integrate = torch.where(fire_place,
|
||||
integrate - torch.ones([batch_size], device=hidden.device),
|
||||
integrate)
|
||||
cur = torch.where(fire_place,
|
||||
distribution_completion,
|
||||
alpha)
|
||||
remainds = alpha - cur
|
||||
|
||||
frame += cur[:, None] * hidden[:, t, :]
|
||||
list_frames.append(frame)
|
||||
frame = torch.where(fire_place[:, None].repeat(1, hidden_size),
|
||||
remainds[:, None] * hidden[:, t, :],
|
||||
frame)
|
||||
|
||||
fires = torch.stack(list_fires, 1)
|
||||
frames = torch.stack(list_frames, 1)
|
||||
list_ls = []
|
||||
len_labels = torch.round(alphas.sum(-1)).int()
|
||||
max_label_len = len_labels.max()
|
||||
for b in range(batch_size):
|
||||
fire = fires[b, :]
|
||||
l = torch.index_select(frames[b, :, :], 0, torch.nonzero(fire >= threshold).squeeze())
|
||||
pad_l = torch.zeros([int(max_label_len - l.size(0)), int(hidden_size)], device=hidden.device)
|
||||
list_ls.append(torch.cat([l, pad_l], 0))
|
||||
return torch.stack(list_ls, 0), fires
|
||||
|
||||
|
||||
def CifPredictorV2_test():
|
||||
x = torch.rand([2, 21, 2])
|
||||
x_len = torch.IntTensor([6, 21])
|
||||
|
||||
mask = sequence_mask(x_len, maxlen=x.size(1), dtype=x.dtype)
|
||||
x = x * mask[:, :, None]
|
||||
|
||||
predictor_scripts = torch.jit.script(CifPredictorV2(2, 1, 1))
|
||||
# cif_output, cif_length, alphas, cif_peak = predictor_scripts(x, mask=mask[:, None, :])
|
||||
predictor_scripts.save('test.pt')
|
||||
loaded = torch.jit.load('test.pt')
|
||||
cif_output, cif_length, alphas, cif_peak = loaded(x, mask=mask[:, None, :])
|
||||
# print(cif_output)
|
||||
print(predictor_scripts.code)
|
||||
# predictor = CifPredictorV2(2, 1, 1)
|
||||
# cif_output, cif_length, alphas, cif_peak = predictor(x, mask=mask[:, None, :])
|
||||
print(cif_output)
|
||||
|
||||
|
||||
def CifPredictorV2_export_test():
|
||||
x = torch.rand([2, 21, 2])
|
||||
x_len = torch.IntTensor([6, 21])
|
||||
|
||||
mask = sequence_mask(x_len, maxlen=x.size(1), dtype=x.dtype)
|
||||
x = x * mask[:, :, None]
|
||||
|
||||
# predictor_scripts = torch.jit.script(CifPredictorV2(2, 1, 1))
|
||||
# cif_output, cif_length, alphas, cif_peak = predictor_scripts(x, mask=mask[:, None, :])
|
||||
predictor = CifPredictorV2(2, 1, 1)
|
||||
predictor_trace = torch.jit.trace(predictor, (x, mask[:, None, :]))
|
||||
predictor_trace.save('test_trace.pt')
|
||||
loaded = torch.jit.load('test_trace.pt')
|
||||
|
||||
x = torch.rand([3, 30, 2])
|
||||
x_len = torch.IntTensor([6, 20, 30])
|
||||
mask = sequence_mask(x_len, maxlen=x.size(1), dtype=x.dtype)
|
||||
x = x * mask[:, :, None]
|
||||
cif_output, cif_length, alphas, cif_peak = loaded(x, mask=mask[:, None, :])
|
||||
print(cif_output)
|
||||
# print(predictor_trace.code)
|
||||
# predictor = CifPredictorV2(2, 1, 1)
|
||||
# cif_output, cif_length, alphas, cif_peak = predictor(x, mask=mask[:, None, :])
|
||||
# print(cif_output)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# CifPredictorV2_test()
|
||||
CifPredictorV2_export_test()
|
||||
20
funasr/export/test_onnx.py
Normal file
20
funasr/export/test_onnx.py
Normal file
@ -0,0 +1,20 @@
|
||||
import onnxruntime
|
||||
import numpy as np
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
onnx_path = "/mnt/workspace/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/model.onnx"
|
||||
sess = onnxruntime.InferenceSession(onnx_path)
|
||||
input_name = [nd.name for nd in sess.get_inputs()]
|
||||
output_name = [nd.name for nd in sess.get_outputs()]
|
||||
|
||||
def _get_feed_dict(feats_length):
|
||||
return {'speech': np.zeros((1, feats_length, 560), dtype=np.float32), 'speech_lengths': np.array([feats_length,], dtype=np.int32)}
|
||||
|
||||
def _run(feed_dict):
|
||||
output = sess.run(output_name, input_feed=feed_dict)
|
||||
for name, value in zip(output_name, output):
|
||||
print('{}: {}'.format(name, value.shape))
|
||||
|
||||
_run(_get_feed_dict(100))
|
||||
_run(_get_feed_dict(200))
|
||||
17
funasr/export/test_torchscripts.py
Normal file
17
funasr/export/test_torchscripts.py
Normal file
@ -0,0 +1,17 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
if __name__ == '__main__':
|
||||
onnx_path = "/mnt/workspace/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/model.torchscripts"
|
||||
loaded = torch.jit.load(onnx_path)
|
||||
|
||||
x = torch.rand([2, 21, 560])
|
||||
x_len = torch.IntTensor([6, 21])
|
||||
res = loaded(x, x_len)
|
||||
print(res[0].size(), res[1])
|
||||
|
||||
x = torch.rand([5, 50, 560])
|
||||
x_len = torch.IntTensor([6, 21, 10, 30, 50])
|
||||
res = loaded(x, x_len)
|
||||
print(res[0].size(), res[1])
|
||||
|
||||
0
funasr/export/utils/__init__.py
Normal file
0
funasr/export/utils/__init__.py
Normal file
80
funasr/export/utils/torch_function.py
Normal file
80
funasr/export/utils/torch_function.py
Normal file
@ -0,0 +1,80 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MakePadMask(nn.Module):
|
||||
def __init__(self, max_seq_len=512, flip=True):
|
||||
super().__init__()
|
||||
if flip:
|
||||
self.mask_pad = torch.Tensor(1 - np.tri(max_seq_len)).type(torch.bool)
|
||||
else:
|
||||
self.mask_pad = torch.Tensor(np.tri(max_seq_len)).type(torch.bool)
|
||||
|
||||
def forward(self, lengths, xs=None, length_dim=-1, maxlen=None):
|
||||
"""Make mask tensor containing indices of padded part.
|
||||
This implementation creates the same mask tensor with original make_pad_mask,
|
||||
which can be converted into onnx format.
|
||||
Dimension length of xs should be 2 or 3.
|
||||
"""
|
||||
if length_dim == 0:
|
||||
raise ValueError("length_dim cannot be 0: {}".format(length_dim))
|
||||
|
||||
if xs is not None and len(xs.shape) == 3:
|
||||
if length_dim == 1:
|
||||
lengths = lengths.unsqueeze(1).expand(
|
||||
*xs.transpose(1, 2).shape[:2])
|
||||
else:
|
||||
lengths = lengths.unsqueeze(1).expand(*xs.shape[:2])
|
||||
|
||||
if maxlen is not None:
|
||||
m = maxlen
|
||||
elif xs is not None:
|
||||
m = xs.shape[-1]
|
||||
else:
|
||||
m = torch.max(lengths)
|
||||
|
||||
mask = self.mask_pad[lengths - 1][..., :m].type(torch.float32)
|
||||
|
||||
if length_dim == 1:
|
||||
return mask.transpose(1, 2)
|
||||
else:
|
||||
return mask
|
||||
|
||||
class sequence_mask(nn.Module):
|
||||
def __init__(self, max_seq_len=512, flip=True):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, lengths, max_seq_len=None, dtype=torch.float32, device=None):
|
||||
if max_seq_len is None:
|
||||
max_seq_len = lengths.max()
|
||||
row_vector = torch.arange(0, max_seq_len, 1).to(lengths.device)
|
||||
matrix = torch.unsqueeze(lengths, dim=-1)
|
||||
mask = row_vector < matrix
|
||||
|
||||
return mask.type(dtype).to(device) if device is not None else mask.type(dtype)
|
||||
|
||||
def normalize(input: torch.Tensor, p: float = 2.0, dim: int = 1, out: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
if out is None:
|
||||
denom = input.norm(p, dim, keepdim=True).expand_as(input)
|
||||
return input / denom
|
||||
else:
|
||||
denom = input.norm(p, dim, keepdim=True).expand_as(input)
|
||||
return torch.div(input, denom, out=out)
|
||||
|
||||
def subsequent_mask(size: torch.Tensor):
|
||||
return torch.ones(size, size).tril()
|
||||
|
||||
|
||||
def MakePadMask_test():
|
||||
feats_length = torch.tensor([10]).type(torch.long)
|
||||
mask_fn = MakePadMask()
|
||||
mask = mask_fn(feats_length)
|
||||
print(mask)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
MakePadMask_test()
|
||||
@ -293,7 +293,7 @@ class SANMEncoder(AbsEncoder):
|
||||
position embedded tensor and mask
|
||||
"""
|
||||
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
|
||||
xs_pad *= self.output_size()**0.5
|
||||
xs_pad = xs_pad * self.output_size()**0.5
|
||||
if self.embed is None:
|
||||
xs_pad = xs_pad
|
||||
elif (
|
||||
|
||||
Loading…
Reference in New Issue
Block a user