FunASR/funasr/export/models/modules/multihead_att.py
2023-02-07 15:19:18 +08:00

136 lines
4.4 KiB
Python

import os
import math
import torch
import torch.nn as nn
class MultiHeadedAttentionSANM(nn.Module):
def __init__(self, model):
super().__init__()
self.d_k = model.d_k
self.h = model.h
self.linear_out = model.linear_out
self.linear_q_k_v = model.linear_q_k_v
self.fsmn_block = model.fsmn_block
self.pad_fn = model.pad_fn
self.attn = None
self.all_head_size = self.h * self.d_k
def forward(self, x, mask):
mask_3d_btd, mask_4d_bhlt = mask
q_h, k_h, v_h, v = self.forward_qkv(x)
fsmn_memory = self.forward_fsmn(v, mask_3d_btd)
q_h = q_h * self.d_k**(-0.5)
scores = torch.matmul(q_h, k_h.transpose(-2, -1))
att_outs = self.forward_attention(v_h, scores, mask_4d_bhlt)
return att_outs + fsmn_memory
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.h, self.d_k)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward_qkv(self, x):
q_k_v = self.linear_q_k_v(x)
q, k, v = torch.split(q_k_v, int(self.h * self.d_k), dim=-1)
q_h = self.transpose_for_scores(q)
k_h = self.transpose_for_scores(k)
v_h = self.transpose_for_scores(v)
return q_h, k_h, v_h, v
def forward_fsmn(self, inputs, mask):
# b, t, d = inputs.size()
# mask = torch.reshape(mask, (b, -1, 1))
inputs = inputs * mask
x = inputs.transpose(1, 2)
x = self.pad_fn(x)
x = self.fsmn_block(x)
x = x.transpose(1, 2)
x = x + inputs
x = x * mask
return x
def forward_attention(self, value, scores, mask):
scores = scores + mask
self.attn = torch.softmax(scores, dim=-1)
context_layer = torch.matmul(self.attn, value) # (batch, head, time1, d_k)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
return self.linear_out(context_layer) # (batch, time1, d_model)
class MultiHeadedAttentionSANMDecoder(nn.Module):
def __init__(self, model):
super().__init__()
self.fsmn_block = model.fsmn_block
self.pad_fn = model.pad_fn
self.kernel_size = model.kernel_size
self.attn = None
def forward(self, inputs, mask, cache=None):
# b, t, d = inputs.size()
# mask = torch.reshape(mask, (b, -1, 1))
inputs = inputs * mask
x = inputs.transpose(1, 2)
if cache is None:
x = self.pad_fn(x)
else:
x = torch.cat((cache[:, :, 1:], x), dim=2)
cache = x
x = self.fsmn_block(x)
x = x.transpose(1, 2)
x = x + inputs
x = x * mask
return x, cache
class MultiHeadedAttentionCrossAtt(nn.Module):
def __init__(self, model):
super().__init__()
self.d_k = model.d_k
self.h = model.h
self.linear_q = model.linear_q
self.linear_k_v = model.linear_k_v
self.linear_out = model.linear_out
self.attn = None
self.all_head_size = self.h * self.d_k
def forward(self, x, memory, memory_mask):
q, k, v = self.forward_qkv(x, memory)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, memory_mask)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.h, self.d_k)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward_qkv(self, x, memory):
q = self.linear_q(x)
k_v = self.linear_k_v(memory)
k, v = torch.split(k_v, int(self.h * self.d_k), dim=-1)
q = self.transpose_for_scores(q)
k = self.transpose_for_scores(k)
v = self.transpose_for_scores(v)
return q, k, v
def forward_attention(self, value, scores, mask):
scores = scores + mask
self.attn = torch.softmax(scores, dim=-1)
context_layer = torch.matmul(self.attn, value) # (batch, head, time1, d_k)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
return self.linear_out(context_layer) # (batch, time1, d_model)