FunASR/funasr/export/models/decoder/sanm_decoder.py
2023-02-07 17:45:59 +08:00

160 lines
6.2 KiB
Python

import os
import torch
import torch.nn as nn
from funasr.export.utils.torch_function import MakePadMask
from funasr.export.utils.torch_function import sequence_mask
from funasr.modules.attention import MultiHeadedAttentionSANMDecoder
from funasr.export.models.modules.multihead_att import MultiHeadedAttentionSANMDecoder as MultiHeadedAttentionSANMDecoder_export
from funasr.modules.attention import MultiHeadedAttentionCrossAtt
from funasr.export.models.modules.multihead_att import MultiHeadedAttentionCrossAtt as MultiHeadedAttentionCrossAtt_export
from funasr.modules.positionwise_feed_forward import PositionwiseFeedForwardDecoderSANM
from funasr.export.models.modules.feedforward import PositionwiseFeedForwardDecoderSANM as PositionwiseFeedForwardDecoderSANM_export
from funasr.export.models.modules.decoder_layer import DecoderLayerSANM as DecoderLayerSANM_export
class ParaformerSANMDecoder(nn.Module):
def __init__(self, model,
max_seq_len=512,
model_name='decoder',
onnx: bool = True,):
super().__init__()
# self.embed = model.embed #Embedding(model.embed, max_seq_len)
self.model = model
if onnx:
self.make_pad_mask = MakePadMask(max_seq_len, flip=False)
else:
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
for i, d in enumerate(self.model.decoders):
if isinstance(d.feed_forward, PositionwiseFeedForwardDecoderSANM):
d.feed_forward = PositionwiseFeedForwardDecoderSANM_export(d.feed_forward)
if isinstance(d.self_attn, MultiHeadedAttentionSANMDecoder):
d.self_attn = MultiHeadedAttentionSANMDecoder_export(d.self_attn)
if isinstance(d.src_attn, MultiHeadedAttentionCrossAtt):
d.src_attn = MultiHeadedAttentionCrossAtt_export(d.src_attn)
self.model.decoders[i] = DecoderLayerSANM_export(d)
if self.model.decoders2 is not None:
for i, d in enumerate(self.model.decoders2):
if isinstance(d.feed_forward, PositionwiseFeedForwardDecoderSANM):
d.feed_forward = PositionwiseFeedForwardDecoderSANM_export(d.feed_forward)
if isinstance(d.self_attn, MultiHeadedAttentionSANMDecoder):
d.self_attn = MultiHeadedAttentionSANMDecoder_export(d.self_attn)
self.model.decoders2[i] = DecoderLayerSANM_export(d)
for i, d in enumerate(self.model.decoders3):
if isinstance(d.feed_forward, PositionwiseFeedForwardDecoderSANM):
d.feed_forward = PositionwiseFeedForwardDecoderSANM_export(d.feed_forward)
self.model.decoders3[i] = DecoderLayerSANM_export(d)
self.output_layer = model.output_layer
self.after_norm = model.after_norm
self.model_name = model_name
def prepare_mask(self, mask):
mask_3d_btd = mask[:, :, None]
if len(mask.shape) == 2:
mask_4d_bhlt = 1 - mask[:, None, None, :]
elif len(mask.shape) == 3:
mask_4d_bhlt = 1 - mask[:, None, :]
mask_4d_bhlt = mask_4d_bhlt * -10000.0
return mask_3d_btd, mask_4d_bhlt
def forward(
self,
hs_pad: torch.Tensor,
hlens: torch.Tensor,
ys_in_pad: torch.Tensor,
ys_in_lens: torch.Tensor,
):
tgt = ys_in_pad
tgt_mask = self.make_pad_mask(ys_in_lens)
tgt_mask, _ = self.prepare_mask(tgt_mask)
# tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]
memory = hs_pad
memory_mask = self.make_pad_mask(hlens)
_, memory_mask = self.prepare_mask(memory_mask)
# memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
x = tgt
x, tgt_mask, memory, memory_mask, _ = self.model.decoders(
x, tgt_mask, memory, memory_mask
)
if self.model.decoders2 is not None:
x, tgt_mask, memory, memory_mask, _ = self.model.decoders2(
x, tgt_mask, memory, memory_mask
)
x, tgt_mask, memory, memory_mask, _ = self.model.decoders3(
x, tgt_mask, memory, memory_mask
)
x = self.after_norm(x)
x = self.output_layer(x)
return x, ys_in_lens
def get_dummy_inputs(self, enc_size):
tgt = torch.LongTensor([0]).unsqueeze(0)
memory = torch.randn(1, 100, enc_size)
pre_acoustic_embeds = torch.randn(1, 1, enc_size)
cache_num = len(self.model.decoders) + len(self.model.decoders2)
cache = [
torch.zeros((1, self.model.decoders[0].size, self.model.decoders[0].self_attn.kernel_size))
for _ in range(cache_num)
]
return (tgt, memory, pre_acoustic_embeds, cache)
def is_optimizable(self):
return True
def get_input_names(self):
cache_num = len(self.model.decoders) + len(self.model.decoders2)
return ['tgt', 'memory', 'pre_acoustic_embeds'] \
+ ['cache_%d' % i for i in range(cache_num)]
def get_output_names(self):
cache_num = len(self.model.decoders) + len(self.model.decoders2)
return ['y'] \
+ ['out_cache_%d' % i for i in range(cache_num)]
def get_dynamic_axes(self):
ret = {
'tgt': {
0: 'tgt_batch',
1: 'tgt_length'
},
'memory': {
0: 'memory_batch',
1: 'memory_length'
},
'pre_acoustic_embeds': {
0: 'acoustic_embeds_batch',
1: 'acoustic_embeds_length',
}
}
cache_num = len(self.model.decoders) + len(self.model.decoders2)
ret.update({
'cache_%d' % d: {
0: 'cache_%d_batch' % d,
2: 'cache_%d_length' % d
}
for d in range(cache_num)
})
return ret
def get_model_config(self, path):
return {
"dec_type": "XformerDecoder",
"model_path": os.path.join(path, f'{self.model_name}.onnx'),
"n_layers": len(self.model.decoders) + len(self.model.decoders2),
"odim": self.model.decoders[0].size
}