This commit is contained in:
speech_asr 2023-04-17 11:23:37 +08:00
parent bd7455ec7d
commit 6659c37d81
2 changed files with 137 additions and 3 deletions

View File

@ -1,9 +1,12 @@
import logging
import os
import sys
import torch
from funasr.utils import config_argparse
from funasr.utils.build_distributed import build_distributed
from funasr.utils.prepare_data import prepare_data
from funasr.utils.types import str2bool
@ -318,9 +321,23 @@ if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
# ddp init
args.distributed = args.dist_world_size > 1
distributed_option = build_distributed(args)
if not distributed_option.distributed or distributed_option.dist_rank == 0:
logging.basicConfig(
level="INFO",
format=f"[{os.uname()[1].split('.')[0]}]"
f" %(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level="ERROR",
format=f"[{os.uname()[1].split('.')[0]}]"
f" %(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.info("world size: {}, rank: {}, local_rank: {}".format(distributed_option.dist_world_size,
distributed_option.dist_rank,
distributed_option.local_rank))
#
prepare_data(args, distributed_option)

View File

@ -0,0 +1,117 @@
import os
import logging
from multiprocessing import Pool
import numpy as np
import torch.distributed as dist
def filter_wav_text(data_dir, dataset):
wav_file = os.path.join(data_dir, dataset, "wav.scp")
text_file = os.path.join(data_dir, dataset, "text")
with open(wav_file) as f_wav, open(text_file) as f_text:
wav_lines = f_wav.readlines()
text_lines = f_text.readlines()
os.rename(wav_file, "{}.bak".format(wav_file))
os.rename(text_file, "{}.bak".format(text_file))
wav_dict = {}
for line in wav_lines:
parts = line.strip().split()
if len(parts) < 2:
continue
wav_dict[parts[0]] = parts[1]
text_dict = {}
for line in text_lines:
parts = line.strip().split()
if len(parts) < 2:
continue
text_dict[parts[0]] = " ".join(parts[1:]).lower()
filter_count = 0
with open(wav_file, "w") as f_wav, open(text_file, "w") as f_text:
for sample_name, wav_path in wav_dict.items():
if sample_name in text_dict.keys():
f_wav.write(sample_name + " " + wav_path + "\n")
f_text.write(sample_name + " " + text_dict[sample_name] + "\n")
else:
filter_count += 1
logging.info("{}/{} samples in {} are filtered because of the mismatch between wav.scp and text".format(len(wav_lines),
filter_count,
dataset))
def calc_shape_core(root_path, frontend_conf, speech_length_min, speech_length_max, idx):
wav_scp_file = os.path.join(root_path, "wav.scp.{}".format(idx))
shape_file = os.path.join(root_path, "speech_shape.{}".format(idx))
with open(wav_scp_file) as f:
lines = f.readlines()
with open(shape_file, "w") as f:
for line in lines:
sample_name, wav_path = line.strip().split()
n_frames, feature_dim, speech_length = wav2num_frame(wav_path, frontend_conf)
write_flag = True
if speech_length_min > 0 and speech_length < speech_length_min:
write_flag = False
if speech_length_max > 0 and speech_length > speech_length_max:
write_flag = False
if write_flag:
f.write("{} {},{}\n".format(sample_name, str(int(np.ceil(n_frames))), str(int(feature_dim))))
f.flush()
def calc_shape(args, dataset, nj=32):
shape_path = os.path.join(args.data_dir, dataset, "speech_shape")
if os.path.exists(shape_path):
print('Shape file for small dataset already exists.')
return
os.makedirs(shape_path, exist_ok=True)
split_shape_path = os.path.join(args.data_dir, dataset, "shape_files")
if os.path.exists(shape_path):
assert os.path.exists(os.path.join(args.data_dir, dataset, "speech_shape"))
print('Shape file for small dataset already exists.')
return
os.makedirs(shape_path, exist_ok=True)
# split
wav_scp_file = os.path.join(args.data_dir, dataset, "wav.scp")
with open(wav_scp_file) as f:
lines = f.readlines()
num_lines = len(lines)
num_job_lines = num_lines // nj
start = 0
for i in range(nj):
end = start + num_job_lines
file = os.path.join(shape_path, "wav.scp.{}".format(str(i + 1)))
with open(file, "w") as f:
if i == nj - 1:
f.writelines(lines[start:])
else:
f.writelines(lines[start:end])
start = end
p = Pool(nj)
for i in range(nj):
p.apply_async(calc_shape_core,
args=(shape_path, frontend_conf, speech_length_min, speech_length_max, str(i + 1)))
print('Generating shape files, please wait a few minutes...')
p.close()
p.join()
# combine
file = os.path.join(data_dir, dataset, "speech_shape")
with open(file, "w") as f:
for i in range(nj):
job_file = os.path.join(shape_path, "speech_shape.{}".format(str(i + 1)))
with open(job_file) as job_f:
lines = job_f.readlines()
f.writelines(lines)
print('Generating shape files done.')
def prepare_data(args, distributed_option):
distributed = distributed_option.distributed
if not distributed or distributed_option.dist_rank == 0:
filter_wav_text(args.data_dir, args.train_set)
filter_wav_text(args.data_dir, args.dev_set)
dist.barrier()
if args.dataset_type == "small" and args.train_shape_file is None: