mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
118 lines
4.6 KiB
Python
118 lines
4.6 KiB
Python
import os
|
|
import logging
|
|
from multiprocessing import Pool
|
|
|
|
import numpy as np
|
|
import torch.distributed as dist
|
|
|
|
|
|
def filter_wav_text(data_dir, dataset):
|
|
wav_file = os.path.join(data_dir, dataset, "wav.scp")
|
|
text_file = os.path.join(data_dir, dataset, "text")
|
|
with open(wav_file) as f_wav, open(text_file) as f_text:
|
|
wav_lines = f_wav.readlines()
|
|
text_lines = f_text.readlines()
|
|
os.rename(wav_file, "{}.bak".format(wav_file))
|
|
os.rename(text_file, "{}.bak".format(text_file))
|
|
wav_dict = {}
|
|
for line in wav_lines:
|
|
parts = line.strip().split()
|
|
if len(parts) < 2:
|
|
continue
|
|
wav_dict[parts[0]] = parts[1]
|
|
text_dict = {}
|
|
for line in text_lines:
|
|
parts = line.strip().split()
|
|
if len(parts) < 2:
|
|
continue
|
|
text_dict[parts[0]] = " ".join(parts[1:]).lower()
|
|
filter_count = 0
|
|
with open(wav_file, "w") as f_wav, open(text_file, "w") as f_text:
|
|
for sample_name, wav_path in wav_dict.items():
|
|
if sample_name in text_dict.keys():
|
|
f_wav.write(sample_name + " " + wav_path + "\n")
|
|
f_text.write(sample_name + " " + text_dict[sample_name] + "\n")
|
|
else:
|
|
filter_count += 1
|
|
logging.info("{}/{} samples in {} are filtered because of the mismatch between wav.scp and text".format(len(wav_lines),
|
|
filter_count,
|
|
dataset))
|
|
|
|
|
|
def calc_shape_core(root_path, frontend_conf, speech_length_min, speech_length_max, idx):
|
|
wav_scp_file = os.path.join(root_path, "wav.scp.{}".format(idx))
|
|
shape_file = os.path.join(root_path, "speech_shape.{}".format(idx))
|
|
with open(wav_scp_file) as f:
|
|
lines = f.readlines()
|
|
with open(shape_file, "w") as f:
|
|
for line in lines:
|
|
sample_name, wav_path = line.strip().split()
|
|
n_frames, feature_dim, speech_length = wav2num_frame(wav_path, frontend_conf)
|
|
write_flag = True
|
|
if speech_length_min > 0 and speech_length < speech_length_min:
|
|
write_flag = False
|
|
if speech_length_max > 0 and speech_length > speech_length_max:
|
|
write_flag = False
|
|
if write_flag:
|
|
f.write("{} {},{}\n".format(sample_name, str(int(np.ceil(n_frames))), str(int(feature_dim))))
|
|
f.flush()
|
|
|
|
|
|
def calc_shape(args, dataset, nj=32):
|
|
shape_path = os.path.join(args.data_dir, dataset, "speech_shape")
|
|
if os.path.exists(shape_path):
|
|
print('Shape file for small dataset already exists.')
|
|
return
|
|
os.makedirs(shape_path, exist_ok=True)
|
|
split_shape_path = os.path.join(args.data_dir, dataset, "shape_files")
|
|
if os.path.exists(shape_path):
|
|
assert os.path.exists(os.path.join(args.data_dir, dataset, "speech_shape"))
|
|
print('Shape file for small dataset already exists.')
|
|
return
|
|
os.makedirs(shape_path, exist_ok=True)
|
|
|
|
# split
|
|
wav_scp_file = os.path.join(args.data_dir, dataset, "wav.scp")
|
|
with open(wav_scp_file) as f:
|
|
lines = f.readlines()
|
|
num_lines = len(lines)
|
|
num_job_lines = num_lines // nj
|
|
start = 0
|
|
for i in range(nj):
|
|
end = start + num_job_lines
|
|
file = os.path.join(shape_path, "wav.scp.{}".format(str(i + 1)))
|
|
with open(file, "w") as f:
|
|
if i == nj - 1:
|
|
f.writelines(lines[start:])
|
|
else:
|
|
f.writelines(lines[start:end])
|
|
start = end
|
|
|
|
p = Pool(nj)
|
|
for i in range(nj):
|
|
p.apply_async(calc_shape_core,
|
|
args=(shape_path, frontend_conf, speech_length_min, speech_length_max, str(i + 1)))
|
|
print('Generating shape files, please wait a few minutes...')
|
|
p.close()
|
|
p.join()
|
|
|
|
# combine
|
|
file = os.path.join(data_dir, dataset, "speech_shape")
|
|
with open(file, "w") as f:
|
|
for i in range(nj):
|
|
job_file = os.path.join(shape_path, "speech_shape.{}".format(str(i + 1)))
|
|
with open(job_file) as job_f:
|
|
lines = job_f.readlines()
|
|
f.writelines(lines)
|
|
print('Generating shape files done.')
|
|
|
|
|
|
def prepare_data(args, distributed_option):
|
|
distributed = distributed_option.distributed
|
|
if not distributed or distributed_option.dist_rank == 0:
|
|
filter_wav_text(args.data_dir, args.train_set)
|
|
filter_wav_text(args.data_dir, args.dev_set)
|
|
dist.barrier()
|
|
|
|
if args.dataset_type == "small" and args.train_shape_file is None:
|