mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update
This commit is contained in:
parent
dfa356a10c
commit
bd7455ec7d
326
funasr/bin/train.py
Normal file
326
funasr/bin/train.py
Normal file
@ -0,0 +1,326 @@
|
||||
import sys
|
||||
|
||||
import torch
|
||||
|
||||
from funasr.utils import config_argparse
|
||||
from funasr.utils.build_distributed import build_distributed
|
||||
from funasr.utils.types import str2bool
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = config_argparse.ArgumentParser(
|
||||
description="FunASR Common Training Parser",
|
||||
)
|
||||
|
||||
# common configuration
|
||||
parser.add_argument("--output_dir", help="model save path")
|
||||
parser.add_argument(
|
||||
"--ngpu",
|
||||
type=int,
|
||||
default=0,
|
||||
help="The number of gpus. 0 indicates CPU mode",
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
||||
|
||||
# ddp related
|
||||
parser.add_argument(
|
||||
"--dist_backend",
|
||||
default="nccl",
|
||||
type=str,
|
||||
help="distributed backend",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dist_init_method",
|
||||
type=str,
|
||||
default="env://",
|
||||
help='if init_method="env://", env values of "MASTER_PORT", "MASTER_ADDR", '
|
||||
'"WORLD_SIZE", and "RANK" are referred.',
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dist_world_size",
|
||||
default=None,
|
||||
help="number of nodes for distributed training",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dist_rank",
|
||||
default=None,
|
||||
help="node rank for distributed training",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--local_rank",
|
||||
default=None,
|
||||
help="local rank for distributed training",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--unused_parameters",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Whether to use the find_unused_parameters in "
|
||||
"torch.nn.parallel.DistributedDataParallel ",
|
||||
)
|
||||
|
||||
# cudnn related
|
||||
parser.add_argument(
|
||||
"--cudnn_enabled",
|
||||
type=str2bool,
|
||||
default=torch.backends.cudnn.enabled,
|
||||
help="Enable CUDNN",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cudnn_benchmark",
|
||||
type=str2bool,
|
||||
default=torch.backends.cudnn.benchmark,
|
||||
help="Enable cudnn-benchmark mode",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cudnn_deterministic",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Enable cudnn-deterministic mode",
|
||||
)
|
||||
|
||||
# trainer related
|
||||
parser.add_argument(
|
||||
"--max_epoch",
|
||||
type=int,
|
||||
default=40,
|
||||
help="The maximum number epoch to train",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_update",
|
||||
type=int,
|
||||
default=sys.maxsize,
|
||||
help="The maximum number update step to train",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_interval",
|
||||
type=int,
|
||||
default=10000,
|
||||
help="The batch interval for saving model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--patience",
|
||||
default=None,
|
||||
help="Number of epochs to wait without improvement "
|
||||
"before stopping the training",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--val_scheduler_criterion",
|
||||
type=str,
|
||||
nargs=2,
|
||||
default=("valid", "loss"),
|
||||
help="The criterion used for the value given to the lr scheduler. "
|
||||
'Give a pair referring the phase, "train" or "valid",'
|
||||
'and the criterion name. The mode specifying "min" or "max" can '
|
||||
"be changed by --scheduler_conf",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--early_stopping_criterion",
|
||||
type=str,
|
||||
nargs=3,
|
||||
default=("valid", "loss", "min"),
|
||||
help="The criterion used for judging of early stopping. "
|
||||
'Give a pair referring the phase, "train" or "valid",'
|
||||
'the criterion name and the mode, "min" or "max", e.g. "acc,max".',
|
||||
)
|
||||
parser.add_argument(
|
||||
"--best_model_criterion",
|
||||
nargs="+",
|
||||
default=[
|
||||
("train", "loss", "min"),
|
||||
("valid", "loss", "min"),
|
||||
("train", "acc", "max"),
|
||||
("valid", "acc", "max"),
|
||||
],
|
||||
help="The criterion used for judging of the best model. "
|
||||
'Give a pair referring the phase, "train" or "valid",'
|
||||
'the criterion name, and the mode, "min" or "max", e.g. "acc,max".',
|
||||
)
|
||||
parser.add_argument(
|
||||
"--keep_nbest_models",
|
||||
type=int,
|
||||
nargs="+",
|
||||
default=[10],
|
||||
help="Remove previous snapshots excluding the n-best scored epochs",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--nbest_averaging_interval",
|
||||
type=int,
|
||||
default=0,
|
||||
help="The epoch interval to apply model averaging and save nbest models",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--grad_clip",
|
||||
type=float,
|
||||
default=5.0,
|
||||
help="Gradient norm threshold to clip",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--grad_clip_type",
|
||||
type=float,
|
||||
default=2.0,
|
||||
help="The type of the used p-norm for gradient clip. Can be inf",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--grad_noise",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="The flag to switch to use noise injection to "
|
||||
"gradients during training",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--accum_grad",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The number of gradient accumulation",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--resume",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Enable resuming if checkpoint is existing",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_amp",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Enable Automatic Mixed Precision. This feature requires pytorch>=1.6",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--log_interval",
|
||||
default=None,
|
||||
help="Show the logs every the number iterations in each epochs at the "
|
||||
"training phase. If None is given, it is decided according the number "
|
||||
"of training samples automatically .",
|
||||
)
|
||||
|
||||
# pretrained model related
|
||||
parser.add_argument(
|
||||
"--init_param",
|
||||
type=str,
|
||||
default=[],
|
||||
nargs="*",
|
||||
help="Specify the file path used for initialization of parameters. "
|
||||
"The format is '<file_path>:<src_key>:<dst_key>:<exclude_keys>', "
|
||||
"where file_path is the model file path, "
|
||||
"src_key specifies the key of model states to be used in the model file, "
|
||||
"dst_key specifies the attribute of the model to be initialized, "
|
||||
"and exclude_keys excludes keys of model states for the initialization."
|
||||
"e.g.\n"
|
||||
" # Load all parameters"
|
||||
" --init_param some/where/model.pb\n"
|
||||
" # Load only decoder parameters"
|
||||
" --init_param some/where/model.pb:decoder:decoder\n"
|
||||
" # Load only decoder parameters excluding decoder.embed"
|
||||
" --init_param some/where/model.pb:decoder:decoder:decoder.embed\n"
|
||||
" --init_param some/where/model.pb:decoder:decoder:decoder.embed\n",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ignore_init_mismatch",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Ignore size mismatch when loading pre-trained model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--freeze_param",
|
||||
type=str,
|
||||
default=[],
|
||||
nargs="*",
|
||||
help="Freeze parameters",
|
||||
)
|
||||
|
||||
# dataset related
|
||||
parser.add_argument(
|
||||
"--dataset_type",
|
||||
type=str,
|
||||
default="small",
|
||||
help="whether to use dataloader for large dataset",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--train_data_file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="train_list for large dataset",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--valid_data_file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="valid_list for large dataset",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--train_data_path_and_name_and_type",
|
||||
action="append",
|
||||
default=[],
|
||||
help="e.g. '--train_data_path_and_name_and_type some/path/a.scp,foo,sound'. ",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--valid_data_path_and_name_and_type",
|
||||
action="append",
|
||||
default=[],
|
||||
)
|
||||
|
||||
# pai related
|
||||
parser.add_argument(
|
||||
"--use_pai",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="flag to indicate whether training on PAI",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--simple_ddp",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_worker_count",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The number of machines on PAI.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--access_key_id",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The username for oss.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--access_key_secret",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The password for oss.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--endpoint",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The endpoint for oss.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bucket_name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The bucket name for oss.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--oss_bucket",
|
||||
default=None,
|
||||
help="oss bucket.",
|
||||
)
|
||||
|
||||
# task related
|
||||
parser.add_argument("--task_name", help="for different task")
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
|
||||
args.distributed = args.dist_world_size > 1
|
||||
distributed_option = build_distributed(args)
|
||||
|
||||
#
|
||||
|
||||
|
||||
@ -30,6 +30,7 @@ import torch.multiprocessing
|
||||
import torch.nn
|
||||
import torch.optim
|
||||
import yaml
|
||||
from funasr.train.abs_espnet_model import AbsESPnetModel
|
||||
from torch.utils.data import DataLoader
|
||||
from typeguard import check_argument_types
|
||||
from typeguard import check_return_type
|
||||
@ -44,19 +45,18 @@ from funasr.iterators.chunk_iter_factory import ChunkIterFactory
|
||||
from funasr.iterators.multiple_iter_factory import MultipleIterFactory
|
||||
from funasr.iterators.sequence_iter_factory import SequenceIterFactory
|
||||
from funasr.main_funcs.collect_stats import collect_stats
|
||||
from funasr.optimizers.sgd import SGD
|
||||
from funasr.optimizers.fairseq_adam import FairseqAdam
|
||||
from funasr.optimizers.sgd import SGD
|
||||
from funasr.samplers.build_batch_sampler import BATCH_TYPES
|
||||
from funasr.samplers.build_batch_sampler import build_batch_sampler
|
||||
from funasr.samplers.unsorted_batch_sampler import UnsortedBatchSampler
|
||||
from funasr.schedulers.noam_lr import NoamLR
|
||||
from funasr.schedulers.warmup_lr import WarmupLR
|
||||
from funasr.schedulers.tri_stage_scheduler import TriStageLR
|
||||
from funasr.schedulers.warmup_lr import WarmupLR
|
||||
from funasr.torch_utils.load_pretrained_model import load_pretrained_model
|
||||
from funasr.torch_utils.model_summary import model_summary
|
||||
from funasr.torch_utils.pytorch_version import pytorch_cudnn_version
|
||||
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
|
||||
from funasr.train.abs_espnet_model import AbsESPnetModel
|
||||
from funasr.train.class_choices import ClassChoices
|
||||
from funasr.train.distributed_utils import DistributedOption
|
||||
from funasr.train.trainer import Trainer
|
||||
|
||||
38
funasr/utils/build_distributed.py
Normal file
38
funasr/utils/build_distributed.py
Normal file
@ -0,0 +1,38 @@
|
||||
import logging
|
||||
import os
|
||||
|
||||
import torch
|
||||
|
||||
from funasr.train.distributed_utils import DistributedOption
|
||||
from funasr.utils.build_dataclass import build_dataclass
|
||||
|
||||
|
||||
def build_distributed(args):
|
||||
distributed_option = build_dataclass(DistributedOption, args)
|
||||
if args.use_pai:
|
||||
distributed_option.init_options_pai()
|
||||
distributed_option.init_torch_distributed_pai(args)
|
||||
elif not args.simple_ddp:
|
||||
distributed_option.init_torch_distributed(args)
|
||||
elif args.distributed and args.simple_ddp:
|
||||
distributed_option.init_torch_distributed_pai(args)
|
||||
args.ngpu = torch.distributed.get_world_size()
|
||||
|
||||
for handler in logging.root.handlers[:]:
|
||||
logging.root.removeHandler(handler)
|
||||
if not distributed_option.distributed or distributed_option.dist_rank == 0:
|
||||
logging.basicConfig(
|
||||
level="INFO",
|
||||
format=f"[{os.uname()[1].split('.')[0]}]"
|
||||
f" %(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
)
|
||||
else:
|
||||
logging.basicConfig(
|
||||
level="ERROR",
|
||||
format=f"[{os.uname()[1].split('.')[0]}]"
|
||||
f" %(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
)
|
||||
logging.info("world size: {}, rank: {}, local_rank: {}".format(distributed_option.dist_world_size,
|
||||
distributed_option.dist_rank,
|
||||
distributed_option.local_rank))
|
||||
return distributed_option
|
||||
Loading…
Reference in New Issue
Block a user