mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
onnx supports tiny and bicif paraformer
This commit is contained in:
parent
508e518b12
commit
57f2a51f9a
@ -1,10 +1,13 @@
|
||||
from funasr.models.e2e_asr_paraformer import Paraformer
|
||||
from funasr.models.e2e_asr_paraformer import Paraformer, BiCifParaformer
|
||||
from funasr.export.models.e2e_asr_paraformer import Paraformer as Paraformer_export
|
||||
from funasr.export.models.e2e_asr_paraformer import BiCifParaformer as BiCifParaformer_export
|
||||
from funasr.models.e2e_uni_asr import UniASR
|
||||
|
||||
def get_model(model, export_config=None):
|
||||
|
||||
if isinstance(model, Paraformer):
|
||||
def get_model(model, export_config=None):
|
||||
if isinstance(model, BiCifParaformer):
|
||||
return BiCifParaformer_export(model, **export_config)
|
||||
elif isinstance(model, Paraformer):
|
||||
return Paraformer_export(model, **export_config)
|
||||
else:
|
||||
raise "The model is not exist!"
|
||||
raise "Funasr does not support the given model type currently."
|
||||
143
funasr/export/models/decoder/transformer_decoder.py
Normal file
143
funasr/export/models/decoder/transformer_decoder.py
Normal file
@ -0,0 +1,143 @@
|
||||
import os
|
||||
from funasr.export import models
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
from funasr.export.utils.torch_function import MakePadMask
|
||||
from funasr.export.utils.torch_function import sequence_mask
|
||||
|
||||
from funasr.modules.attention import MultiHeadedAttentionSANMDecoder
|
||||
from funasr.export.models.modules.multihead_att import MultiHeadedAttentionSANMDecoder as MultiHeadedAttentionSANMDecoder_export
|
||||
from funasr.modules.attention import MultiHeadedAttentionCrossAtt, MultiHeadedAttention
|
||||
from funasr.export.models.modules.multihead_att import MultiHeadedAttentionCrossAtt as MultiHeadedAttentionCrossAtt_export
|
||||
from funasr.export.models.modules.multihead_att import OnnxMultiHeadedAttention
|
||||
from funasr.modules.positionwise_feed_forward import PositionwiseFeedForwardDecoderSANM
|
||||
from funasr.export.models.modules.feedforward import PositionwiseFeedForwardDecoderSANM as PositionwiseFeedForwardDecoderSANM_export
|
||||
from funasr.export.models.modules.decoder_layer import DecoderLayer as DecoderLayer_export
|
||||
|
||||
|
||||
class ParaformerDecoderSAN(nn.Module):
|
||||
def __init__(self, model,
|
||||
max_seq_len=512,
|
||||
model_name='decoder',
|
||||
onnx: bool = True,):
|
||||
super().__init__()
|
||||
# self.embed = model.embed #Embedding(model.embed, max_seq_len)
|
||||
self.model = model
|
||||
if onnx:
|
||||
self.make_pad_mask = MakePadMask(max_seq_len, flip=False)
|
||||
else:
|
||||
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
|
||||
|
||||
for i, d in enumerate(self.model.decoders):
|
||||
if isinstance(d.feed_forward, PositionwiseFeedForwardDecoderSANM):
|
||||
d.feed_forward = PositionwiseFeedForwardDecoderSANM_export(d.feed_forward)
|
||||
if isinstance(d.self_attn, MultiHeadedAttentionSANMDecoder):
|
||||
d.self_attn = MultiHeadedAttentionSANMDecoder_export(d.self_attn)
|
||||
# if isinstance(d.src_attn, MultiHeadedAttentionCrossAtt):
|
||||
# d.src_attn = MultiHeadedAttentionCrossAtt_export(d.src_attn)
|
||||
if isinstance(d.src_attn, MultiHeadedAttention):
|
||||
d.src_attn = OnnxMultiHeadedAttention(d.src_attn)
|
||||
self.model.decoders[i] = DecoderLayer_export(d)
|
||||
|
||||
self.output_layer = model.output_layer
|
||||
self.after_norm = model.after_norm
|
||||
self.model_name = model_name
|
||||
|
||||
|
||||
def prepare_mask(self, mask):
|
||||
mask_3d_btd = mask[:, :, None]
|
||||
if len(mask.shape) == 2:
|
||||
mask_4d_bhlt = 1 - mask[:, None, None, :]
|
||||
elif len(mask.shape) == 3:
|
||||
mask_4d_bhlt = 1 - mask[:, None, :]
|
||||
mask_4d_bhlt = mask_4d_bhlt * -10000.0
|
||||
|
||||
return mask_3d_btd, mask_4d_bhlt
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hs_pad: torch.Tensor,
|
||||
hlens: torch.Tensor,
|
||||
ys_in_pad: torch.Tensor,
|
||||
ys_in_lens: torch.Tensor,
|
||||
):
|
||||
|
||||
tgt = ys_in_pad
|
||||
tgt_mask = self.make_pad_mask(ys_in_lens)
|
||||
tgt_mask, _ = self.prepare_mask(tgt_mask)
|
||||
# tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]
|
||||
|
||||
memory = hs_pad
|
||||
memory_mask = self.make_pad_mask(hlens)
|
||||
_, memory_mask = self.prepare_mask(memory_mask)
|
||||
# memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
|
||||
|
||||
x = tgt
|
||||
x, tgt_mask, memory, memory_mask = self.model.decoders(
|
||||
x, tgt_mask, memory, memory_mask
|
||||
)
|
||||
x = self.after_norm(x)
|
||||
x = self.output_layer(x)
|
||||
|
||||
return x, ys_in_lens
|
||||
|
||||
|
||||
def get_dummy_inputs(self, enc_size):
|
||||
tgt = torch.LongTensor([0]).unsqueeze(0)
|
||||
memory = torch.randn(1, 100, enc_size)
|
||||
pre_acoustic_embeds = torch.randn(1, 1, enc_size)
|
||||
cache_num = len(self.model.decoders) + len(self.model.decoders2)
|
||||
cache = [
|
||||
torch.zeros((1, self.model.decoders[0].size, self.model.decoders[0].self_attn.kernel_size))
|
||||
for _ in range(cache_num)
|
||||
]
|
||||
return (tgt, memory, pre_acoustic_embeds, cache)
|
||||
|
||||
def is_optimizable(self):
|
||||
return True
|
||||
|
||||
def get_input_names(self):
|
||||
cache_num = len(self.model.decoders) + len(self.model.decoders2)
|
||||
return ['tgt', 'memory', 'pre_acoustic_embeds'] \
|
||||
+ ['cache_%d' % i for i in range(cache_num)]
|
||||
|
||||
def get_output_names(self):
|
||||
cache_num = len(self.model.decoders) + len(self.model.decoders2)
|
||||
return ['y'] \
|
||||
+ ['out_cache_%d' % i for i in range(cache_num)]
|
||||
|
||||
def get_dynamic_axes(self):
|
||||
ret = {
|
||||
'tgt': {
|
||||
0: 'tgt_batch',
|
||||
1: 'tgt_length'
|
||||
},
|
||||
'memory': {
|
||||
0: 'memory_batch',
|
||||
1: 'memory_length'
|
||||
},
|
||||
'pre_acoustic_embeds': {
|
||||
0: 'acoustic_embeds_batch',
|
||||
1: 'acoustic_embeds_length',
|
||||
}
|
||||
}
|
||||
cache_num = len(self.model.decoders) + len(self.model.decoders2)
|
||||
ret.update({
|
||||
'cache_%d' % d: {
|
||||
0: 'cache_%d_batch' % d,
|
||||
2: 'cache_%d_length' % d
|
||||
}
|
||||
for d in range(cache_num)
|
||||
})
|
||||
return ret
|
||||
|
||||
def get_model_config(self, path):
|
||||
return {
|
||||
"dec_type": "XformerDecoder",
|
||||
"model_path": os.path.join(path, f'{self.model_name}.onnx'),
|
||||
"n_layers": len(self.model.decoders) + len(self.model.decoders2),
|
||||
"odim": self.model.decoders[0].size
|
||||
}
|
||||
@ -1,17 +1,21 @@
|
||||
import logging
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from funasr.export.utils.torch_function import MakePadMask
|
||||
from funasr.export.utils.torch_function import sequence_mask
|
||||
from funasr.models.encoder.sanm_encoder import SANMEncoder
|
||||
from funasr.models.encoder.conformer_encoder import ConformerEncoder
|
||||
from funasr.export.models.encoder.sanm_encoder import SANMEncoder as SANMEncoder_export
|
||||
from funasr.models.predictor.cif import CifPredictorV2
|
||||
from funasr.export.models.encoder.conformer_encoder import ConformerEncoder as ConformerEncoder_export
|
||||
from funasr.models.predictor.cif import CifPredictorV2, CifPredictorV3
|
||||
from funasr.export.models.predictor.cif import CifPredictorV2 as CifPredictorV2_export
|
||||
from funasr.export.models.predictor.cif import CifPredictorV3 as CifPredictorV3_export
|
||||
from funasr.models.decoder.sanm_decoder import ParaformerSANMDecoder
|
||||
from funasr.models.decoder.transformer_decoder import ParaformerDecoderSAN
|
||||
from funasr.export.models.decoder.sanm_decoder import ParaformerSANMDecoder as ParaformerSANMDecoder_export
|
||||
from funasr.export.models.decoder.transformer_decoder import ParaformerDecoderSAN as ParaformerDecoderSAN_export
|
||||
|
||||
|
||||
class Paraformer(nn.Module):
|
||||
"""
|
||||
@ -34,10 +38,14 @@ class Paraformer(nn.Module):
|
||||
onnx = kwargs["onnx"]
|
||||
if isinstance(model.encoder, SANMEncoder):
|
||||
self.encoder = SANMEncoder_export(model.encoder, onnx=onnx)
|
||||
elif isinstance(model.encoder, ConformerEncoder):
|
||||
self.encoder = ConformerEncoder_export(model.encoder, onnx=onnx)
|
||||
if isinstance(model.predictor, CifPredictorV2):
|
||||
self.predictor = CifPredictorV2_export(model.predictor)
|
||||
if isinstance(model.decoder, ParaformerSANMDecoder):
|
||||
self.decoder = ParaformerSANMDecoder_export(model.decoder, onnx=onnx)
|
||||
elif isinstance(model.decoder, ParaformerDecoderSAN):
|
||||
self.decoder = ParaformerDecoderSAN_export(model.decoder, onnx=onnx)
|
||||
|
||||
self.feats_dim = feats_dim
|
||||
self.model_name = model_name
|
||||
@ -99,4 +107,113 @@ class Paraformer(nn.Module):
|
||||
0: 'batch_size',
|
||||
1: 'logits_length'
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
class BiCifParaformer(nn.Module):
|
||||
"""
|
||||
Author: Speech Lab, Alibaba Group, China
|
||||
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
|
||||
https://arxiv.org/abs/2206.08317
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
max_seq_len=512,
|
||||
feats_dim=560,
|
||||
model_name='model',
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
onnx = False
|
||||
if "onnx" in kwargs:
|
||||
onnx = kwargs["onnx"]
|
||||
if isinstance(model.encoder, SANMEncoder):
|
||||
self.encoder = SANMEncoder_export(model.encoder, onnx=onnx)
|
||||
elif isinstance(model.encoder, ConformerEncoder):
|
||||
self.encoder = ConformerEncoder_export(model.encoder, onnx=onnx)
|
||||
else:
|
||||
logging.warning("Unsupported encoder type to export.")
|
||||
if isinstance(model.predictor, CifPredictorV3):
|
||||
self.predictor = CifPredictorV3_export(model.predictor)
|
||||
else:
|
||||
logging.warning("Wrong predictor type to export.")
|
||||
if isinstance(model.decoder, ParaformerSANMDecoder):
|
||||
self.decoder = ParaformerSANMDecoder_export(model.decoder, onnx=onnx)
|
||||
elif isinstance(model.decoder, ParaformerDecoderSAN):
|
||||
self.decoder = ParaformerDecoderSAN_export(model.decoder, onnx=onnx)
|
||||
else:
|
||||
logging.warning("Unsupported decoder type to export.")
|
||||
|
||||
self.feats_dim = feats_dim
|
||||
self.model_name = model_name
|
||||
|
||||
if onnx:
|
||||
self.make_pad_mask = MakePadMask(max_seq_len, flip=False)
|
||||
else:
|
||||
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
):
|
||||
# a. To device
|
||||
batch = {"speech": speech, "speech_lengths": speech_lengths}
|
||||
# batch = to_device(batch, device=self.device)
|
||||
|
||||
enc, enc_len = self.encoder(**batch)
|
||||
mask = self.make_pad_mask(enc_len)[:, None, :]
|
||||
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor(enc, mask)
|
||||
pre_token_length = pre_token_length.round().type(torch.int32)
|
||||
|
||||
decoder_out, _ = self.decoder(enc, enc_len, pre_acoustic_embeds, pre_token_length)
|
||||
decoder_out = torch.log_softmax(decoder_out, dim=-1)
|
||||
|
||||
# get predicted timestamps
|
||||
us_alphas, us_cif_peak = self.predictor.get_upsample_timestmap(enc, mask, pre_token_length)
|
||||
|
||||
return decoder_out, pre_token_length, us_alphas, us_cif_peak
|
||||
|
||||
def get_dummy_inputs(self):
|
||||
speech = torch.randn(2, 30, self.feats_dim)
|
||||
speech_lengths = torch.tensor([6, 30], dtype=torch.int32)
|
||||
return (speech, speech_lengths)
|
||||
|
||||
def get_dummy_inputs_txt(self, txt_file: str = "/mnt/workspace/data_fbank/0207/12345.wav.fea.txt"):
|
||||
import numpy as np
|
||||
fbank = np.loadtxt(txt_file)
|
||||
fbank_lengths = np.array([fbank.shape[0], ], dtype=np.int32)
|
||||
speech = torch.from_numpy(fbank[None, :, :].astype(np.float32))
|
||||
speech_lengths = torch.from_numpy(fbank_lengths.astype(np.int32))
|
||||
return (speech, speech_lengths)
|
||||
|
||||
def get_input_names(self):
|
||||
return ['speech', 'speech_lengths']
|
||||
|
||||
def get_output_names(self):
|
||||
return ['logits', 'token_num', 'us_alphas', 'us_cif_peak']
|
||||
|
||||
def get_dynamic_axes(self):
|
||||
return {
|
||||
'speech': {
|
||||
0: 'batch_size',
|
||||
1: 'feats_length'
|
||||
},
|
||||
'speech_lengths': {
|
||||
0: 'batch_size',
|
||||
},
|
||||
'logits': {
|
||||
0: 'batch_size',
|
||||
1: 'logits_length'
|
||||
},
|
||||
'us_alphas': {
|
||||
0: 'batch_size',
|
||||
1: 'alphas_length'
|
||||
},
|
||||
'us_cif_peak': {
|
||||
0: 'batch_size',
|
||||
1: 'alphas_length'
|
||||
},
|
||||
}
|
||||
106
funasr/export/models/encoder/conformer_encoder.py
Normal file
106
funasr/export/models/encoder/conformer_encoder.py
Normal file
@ -0,0 +1,106 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from funasr.export.utils.torch_function import MakePadMask
|
||||
from funasr.export.utils.torch_function import sequence_mask
|
||||
from funasr.modules.attention import MultiHeadedAttentionSANM
|
||||
from funasr.export.models.modules.multihead_att import MultiHeadedAttentionSANM as MultiHeadedAttentionSANM_export
|
||||
from funasr.export.models.modules.encoder_layer import EncoderLayerSANM as EncoderLayerSANM_export
|
||||
from funasr.export.models.modules.encoder_layer import EncoderLayerConformer as EncoderLayerConformer_export
|
||||
from funasr.modules.positionwise_feed_forward import PositionwiseFeedForward
|
||||
from funasr.export.models.modules.feedforward import PositionwiseFeedForward as PositionwiseFeedForward_export
|
||||
from funasr.export.models.encoder.sanm_encoder import SANMEncoder
|
||||
from funasr.modules.attention import RelPositionMultiHeadedAttention
|
||||
# from funasr.export.models.modules.multihead_att import RelPositionMultiHeadedAttention as RelPositionMultiHeadedAttention_export
|
||||
from funasr.export.models.modules.multihead_att import OnnxRelPosMultiHeadedAttention as RelPositionMultiHeadedAttention_export
|
||||
|
||||
|
||||
class ConformerEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
max_seq_len=512,
|
||||
feats_dim=560,
|
||||
model_name='encoder',
|
||||
onnx: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
self.embed = model.embed
|
||||
self.model = model
|
||||
self.feats_dim = feats_dim
|
||||
self._output_size = model._output_size
|
||||
|
||||
if onnx:
|
||||
self.make_pad_mask = MakePadMask(max_seq_len, flip=False)
|
||||
else:
|
||||
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
|
||||
|
||||
for i, d in enumerate(self.model.encoders):
|
||||
if isinstance(d.self_attn, MultiHeadedAttentionSANM):
|
||||
d.self_attn = MultiHeadedAttentionSANM_export(d.self_attn)
|
||||
if isinstance(d.self_attn, RelPositionMultiHeadedAttention):
|
||||
d.self_attn = RelPositionMultiHeadedAttention_export(d.self_attn)
|
||||
if isinstance(d.feed_forward, PositionwiseFeedForward):
|
||||
d.feed_forward = PositionwiseFeedForward_export(d.feed_forward)
|
||||
self.model.encoders[i] = EncoderLayerConformer_export(d)
|
||||
|
||||
self.model_name = model_name
|
||||
self.num_heads = model.encoders[0].self_attn.h
|
||||
self.hidden_size = model.encoders[0].self_attn.linear_out.out_features
|
||||
|
||||
|
||||
def prepare_mask(self, mask):
|
||||
if len(mask.shape) == 2:
|
||||
mask = 1 - mask[:, None, None, :]
|
||||
elif len(mask.shape) == 3:
|
||||
mask = 1 - mask[:, None, :]
|
||||
|
||||
return mask * -10000.0
|
||||
|
||||
def forward(self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
):
|
||||
speech = speech * self._output_size ** 0.5
|
||||
mask = self.make_pad_mask(speech_lengths)
|
||||
mask = self.prepare_mask(mask)
|
||||
if self.embed is None:
|
||||
xs_pad = speech
|
||||
else:
|
||||
xs_pad = self.embed(speech)
|
||||
|
||||
encoder_outs = self.model.encoders(xs_pad, mask)
|
||||
xs_pad, masks = encoder_outs[0], encoder_outs[1]
|
||||
|
||||
if isinstance(xs_pad, tuple):
|
||||
xs_pad = xs_pad[0]
|
||||
xs_pad = self.model.after_norm(xs_pad)
|
||||
|
||||
return xs_pad, speech_lengths
|
||||
|
||||
def get_output_size(self):
|
||||
return self.model.encoders[0].size
|
||||
|
||||
def get_dummy_inputs(self):
|
||||
feats = torch.randn(1, 100, self.feats_dim)
|
||||
return (feats)
|
||||
|
||||
def get_input_names(self):
|
||||
return ['feats']
|
||||
|
||||
def get_output_names(self):
|
||||
return ['encoder_out', 'encoder_out_lens', 'predictor_weight']
|
||||
|
||||
def get_dynamic_axes(self):
|
||||
return {
|
||||
'feats': {
|
||||
1: 'feats_length'
|
||||
},
|
||||
'encoder_out': {
|
||||
1: 'enc_out_length'
|
||||
},
|
||||
'predictor_weight':{
|
||||
1: 'pre_out_length'
|
||||
}
|
||||
|
||||
}
|
||||
@ -41,3 +41,30 @@ class DecoderLayerSANM(nn.Module):
|
||||
|
||||
return x, tgt_mask, memory, memory_mask, cache
|
||||
|
||||
|
||||
class DecoderLayer(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.self_attn = model.self_attn
|
||||
self.src_attn = model.src_attn
|
||||
self.feed_forward = model.feed_forward
|
||||
self.norm1 = model.norm1
|
||||
self.norm2 = model.norm2
|
||||
self.norm3 = model.norm3
|
||||
|
||||
def forward(self, tgt, tgt_mask, memory, memory_mask, cache=None):
|
||||
residual = tgt
|
||||
tgt_q = tgt
|
||||
tgt_q_mask = tgt_mask
|
||||
x = residual + self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)
|
||||
|
||||
residual = x
|
||||
x = self.norm2(x)
|
||||
|
||||
x = residual + self.src_attn(x, memory, memory, memory_mask)
|
||||
|
||||
residual = x
|
||||
x = self.norm3(x)
|
||||
x = residual + self.feed_forward(x)
|
||||
|
||||
return x, tgt_mask, memory, memory_mask
|
||||
|
||||
@ -34,4 +34,58 @@ class EncoderLayerSANM(nn.Module):
|
||||
return x, mask
|
||||
|
||||
|
||||
class EncoderLayerConformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
model,
|
||||
):
|
||||
"""Construct an EncoderLayer object."""
|
||||
super().__init__()
|
||||
self.self_attn = model.self_attn
|
||||
self.feed_forward = model.feed_forward
|
||||
self.feed_forward_macaron = model.feed_forward_macaron
|
||||
self.conv_module = model.conv_module
|
||||
self.norm_ff = model.norm_ff
|
||||
self.norm_mha = model.norm_mha
|
||||
self.norm_ff_macaron = model.norm_ff_macaron
|
||||
self.norm_conv = model.norm_conv
|
||||
self.norm_final = model.norm_final
|
||||
self.size = model.size
|
||||
|
||||
def forward(self, x, mask):
|
||||
if isinstance(x, tuple):
|
||||
x, pos_emb = x[0], x[1]
|
||||
else:
|
||||
x, pos_emb = x, None
|
||||
|
||||
if self.feed_forward_macaron is not None:
|
||||
residual = x
|
||||
x = self.norm_ff_macaron(x)
|
||||
x = residual + self.feed_forward_macaron(x)
|
||||
|
||||
residual = x
|
||||
x = self.norm_mha(x)
|
||||
|
||||
x_q = x
|
||||
|
||||
if pos_emb is not None:
|
||||
x_att = self.self_attn(x_q, x, x, pos_emb, mask)
|
||||
else:
|
||||
x_att = self.self_attn(x_q, x, x, mask)
|
||||
x = residual + x_att
|
||||
|
||||
if self.conv_module is not None:
|
||||
residual = x
|
||||
x = self.norm_conv(x)
|
||||
x = residual + self.conv_module(x)
|
||||
|
||||
residual = x
|
||||
x = self.norm_ff(x)
|
||||
x = residual + self.feed_forward(x)
|
||||
|
||||
x = self.norm_final(x)
|
||||
|
||||
if pos_emb is not None:
|
||||
return (x, pos_emb), mask
|
||||
|
||||
return x, mask
|
||||
|
||||
@ -4,6 +4,7 @@ import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class MultiHeadedAttentionSANM(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
@ -32,7 +33,6 @@ class MultiHeadedAttentionSANM(nn.Module):
|
||||
return x.permute(0, 2, 1, 3)
|
||||
|
||||
def forward_qkv(self, x):
|
||||
|
||||
q_k_v = self.linear_q_k_v(x)
|
||||
q, k, v = torch.split(q_k_v, int(self.h * self.d_k), dim=-1)
|
||||
q_h = self.transpose_for_scores(q)
|
||||
@ -41,7 +41,6 @@ class MultiHeadedAttentionSANM(nn.Module):
|
||||
return q_h, k_h, v_h, v
|
||||
|
||||
def forward_fsmn(self, inputs, mask):
|
||||
|
||||
# b, t, d = inputs.size()
|
||||
# mask = torch.reshape(mask, (b, -1, 1))
|
||||
inputs = inputs * mask
|
||||
@ -53,7 +52,6 @@ class MultiHeadedAttentionSANM(nn.Module):
|
||||
x = x * mask
|
||||
return x
|
||||
|
||||
|
||||
def forward_attention(self, value, scores, mask):
|
||||
scores = scores + mask
|
||||
|
||||
@ -65,6 +63,7 @@ class MultiHeadedAttentionSANM(nn.Module):
|
||||
context_layer = context_layer.view(new_context_layer_shape)
|
||||
return self.linear_out(context_layer) # (batch, time1, d_model)
|
||||
|
||||
|
||||
class MultiHeadedAttentionSANMDecoder(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
@ -74,7 +73,6 @@ class MultiHeadedAttentionSANMDecoder(nn.Module):
|
||||
self.attn = None
|
||||
|
||||
def forward(self, inputs, mask, cache=None):
|
||||
|
||||
# b, t, d = inputs.size()
|
||||
# mask = torch.reshape(mask, (b, -1, 1))
|
||||
inputs = inputs * mask
|
||||
@ -92,6 +90,7 @@ class MultiHeadedAttentionSANMDecoder(nn.Module):
|
||||
x = x * mask
|
||||
return x, cache
|
||||
|
||||
|
||||
class MultiHeadedAttentionCrossAtt(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
@ -133,3 +132,104 @@ class MultiHeadedAttentionCrossAtt(nn.Module):
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||||
context_layer = context_layer.view(new_context_layer_shape)
|
||||
return self.linear_out(context_layer) # (batch, time1, d_model)
|
||||
|
||||
|
||||
class OnnxMultiHeadedAttention(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.d_k = model.d_k
|
||||
self.h = model.h
|
||||
self.linear_q = model.linear_q
|
||||
self.linear_k = model.linear_k
|
||||
self.linear_v = model.linear_v
|
||||
self.linear_out = model.linear_out
|
||||
self.attn = None
|
||||
self.all_head_size = self.h * self.d_k
|
||||
|
||||
def forward(self, query, key, value, mask):
|
||||
q, k, v = self.forward_qkv(query, key, value)
|
||||
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
|
||||
return self.forward_attention(v, scores, mask)
|
||||
|
||||
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
||||
new_x_shape = x.size()[:-1] + (self.h, self.d_k)
|
||||
x = x.view(new_x_shape)
|
||||
return x.permute(0, 2, 1, 3)
|
||||
|
||||
def forward_qkv(self, query, key, value):
|
||||
q = self.linear_q(query)
|
||||
k = self.linear_k(key)
|
||||
v = self.linear_v(value)
|
||||
q = self.transpose_for_scores(q)
|
||||
k = self.transpose_for_scores(k)
|
||||
v = self.transpose_for_scores(v)
|
||||
return q, k, v
|
||||
|
||||
def forward_attention(self, value, scores, mask):
|
||||
scores = scores + mask
|
||||
|
||||
self.attn = torch.softmax(scores, dim=-1)
|
||||
context_layer = torch.matmul(self.attn, value) # (batch, head, time1, d_k)
|
||||
|
||||
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||||
context_layer = context_layer.view(new_context_layer_shape)
|
||||
return self.linear_out(context_layer) # (batch, time1, d_model)
|
||||
|
||||
|
||||
class OnnxRelPosMultiHeadedAttention(OnnxMultiHeadedAttention):
|
||||
def __init__(self, model):
|
||||
super().__init__(model)
|
||||
self.linear_pos = model.linear_pos
|
||||
self.pos_bias_u = model.pos_bias_u
|
||||
self.pos_bias_v = model.pos_bias_v
|
||||
|
||||
def forward(self, query, key, value, pos_emb, mask):
|
||||
q, k, v = self.forward_qkv(query, key, value)
|
||||
q = q.transpose(1, 2) # (batch, time1, head, d_k)
|
||||
|
||||
p = self.transpose_for_scores(self.linear_pos(pos_emb)) # (batch, head, time1, d_k)
|
||||
|
||||
# (batch, head, time1, d_k)
|
||||
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
||||
# (batch, head, time1, d_k)
|
||||
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
||||
|
||||
# compute attention score
|
||||
# first compute matrix a and matrix c
|
||||
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
||||
# (batch, head, time1, time2)
|
||||
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
||||
|
||||
# compute matrix b and matrix d
|
||||
# (batch, head, time1, time1)
|
||||
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
||||
matrix_bd = self.rel_shift(matrix_bd)
|
||||
|
||||
scores = (matrix_ac + matrix_bd) / math.sqrt(
|
||||
self.d_k
|
||||
) # (batch, head, time1, time2)
|
||||
|
||||
return self.forward_attention(v, scores, mask)
|
||||
|
||||
def rel_shift(self, x):
|
||||
zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
|
||||
x_padded = torch.cat([zero_pad, x], dim=-1)
|
||||
|
||||
x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
|
||||
x = x_padded[:, :, 1:].view_as(x)[
|
||||
:, :, :, : x.size(-1) // 2 + 1
|
||||
] # only keep the positions from 0 to time2
|
||||
return x
|
||||
|
||||
def forward_attention(self, value, scores, mask):
|
||||
scores = scores + mask
|
||||
|
||||
self.attn = torch.softmax(scores, dim=-1)
|
||||
context_layer = torch.matmul(self.attn, value) # (batch, head, time1, d_k)
|
||||
|
||||
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||||
context_layer = context_layer.view(new_context_layer_shape)
|
||||
return self.linear_out(context_layer) # (batch, time1, d_model)
|
||||
|
||||
@ -1,9 +1,8 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import logging
|
||||
import numpy as np
|
||||
|
||||
|
||||
def sequence_mask(lengths, maxlen=None, dtype=torch.float32, device=None):
|
||||
@ -175,3 +174,115 @@ def cif(hidden, alphas, threshold: float):
|
||||
max_label_len = frame_len
|
||||
frame_fires = frame_fires[:, :max_label_len, :]
|
||||
return frame_fires, fires
|
||||
|
||||
|
||||
class CifPredictorV3(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
|
||||
self.pad = model.pad
|
||||
self.cif_conv1d = model.cif_conv1d
|
||||
self.cif_output = model.cif_output
|
||||
self.threshold = model.threshold
|
||||
self.smooth_factor = model.smooth_factor
|
||||
self.noise_threshold = model.noise_threshold
|
||||
self.tail_threshold = model.tail_threshold
|
||||
|
||||
self.upsample_times = model.upsample_times
|
||||
self.upsample_cnn = model.upsample_cnn
|
||||
self.blstm = model.blstm
|
||||
self.cif_output2 = model.cif_output2
|
||||
self.smooth_factor2 = model.smooth_factor2
|
||||
self.noise_threshold2 = model.noise_threshold2
|
||||
|
||||
def forward(self, hidden: torch.Tensor,
|
||||
mask: torch.Tensor,
|
||||
):
|
||||
h = hidden
|
||||
context = h.transpose(1, 2)
|
||||
queries = self.pad(context)
|
||||
output = torch.relu(self.cif_conv1d(queries))
|
||||
output = output.transpose(1, 2)
|
||||
|
||||
output = self.cif_output(output)
|
||||
alphas = torch.sigmoid(output)
|
||||
alphas = torch.nn.functional.relu(alphas * self.smooth_factor - self.noise_threshold)
|
||||
mask = mask.transpose(-1, -2).float()
|
||||
alphas = alphas * mask
|
||||
alphas = alphas.squeeze(-1)
|
||||
token_num = alphas.sum(-1)
|
||||
|
||||
mask = mask.squeeze(-1)
|
||||
hidden, alphas, token_num = self.tail_process_fn(hidden, alphas, mask=mask)
|
||||
acoustic_embeds, cif_peak = cif(hidden, alphas, self.threshold)
|
||||
|
||||
return acoustic_embeds, token_num, alphas, cif_peak
|
||||
|
||||
def get_upsample_timestmap(self, hidden, mask=None, token_num=None):
|
||||
h = hidden
|
||||
b = hidden.shape[0]
|
||||
context = h.transpose(1, 2)
|
||||
|
||||
# generate alphas2
|
||||
_output = context
|
||||
output2 = self.upsample_cnn(_output)
|
||||
output2 = output2.transpose(1, 2)
|
||||
output2, (_, _) = self.blstm(output2)
|
||||
alphas2 = torch.sigmoid(self.cif_output2(output2))
|
||||
alphas2 = torch.nn.functional.relu(alphas2 * self.smooth_factor2 - self.noise_threshold2)
|
||||
|
||||
mask = mask.repeat(1, self.upsample_times, 1).transpose(-1, -2).reshape(alphas2.shape[0], -1)
|
||||
mask = mask.unsqueeze(-1)
|
||||
alphas2 = alphas2 * mask
|
||||
alphas2 = alphas2.squeeze(-1)
|
||||
_token_num = alphas2.sum(-1)
|
||||
alphas2 *= (token_num / _token_num)[:, None].repeat(1, alphas2.size(1))
|
||||
# upsampled alphas and cif_peak
|
||||
us_alphas = alphas2
|
||||
us_cif_peak = cif_wo_hidden(us_alphas, self.threshold - 1e-4)
|
||||
return us_alphas, us_cif_peak
|
||||
|
||||
def tail_process_fn(self, hidden, alphas, token_num=None, mask=None):
|
||||
b, t, d = hidden.size()
|
||||
tail_threshold = self.tail_threshold
|
||||
|
||||
zeros_t = torch.zeros((b, 1), dtype=torch.float32, device=alphas.device)
|
||||
ones_t = torch.ones_like(zeros_t)
|
||||
|
||||
mask_1 = torch.cat([mask, zeros_t], dim=1)
|
||||
mask_2 = torch.cat([ones_t, mask], dim=1)
|
||||
mask = mask_2 - mask_1
|
||||
tail_threshold = mask * tail_threshold
|
||||
alphas = torch.cat([alphas, zeros_t], dim=1)
|
||||
alphas = torch.add(alphas, tail_threshold)
|
||||
|
||||
zeros = torch.zeros((b, 1, d), dtype=hidden.dtype).to(hidden.device)
|
||||
hidden = torch.cat([hidden, zeros], dim=1)
|
||||
token_num = alphas.sum(dim=-1)
|
||||
token_num_floor = torch.floor(token_num)
|
||||
|
||||
return hidden, alphas, token_num_floor
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def cif_wo_hidden(alphas, threshold: float):
|
||||
batch_size, len_time = alphas.size()
|
||||
|
||||
# loop varss
|
||||
integrate = torch.zeros([batch_size], dtype=alphas.dtype, device=alphas.device)
|
||||
# intermediate vars along time
|
||||
list_fires = []
|
||||
|
||||
for t in range(len_time):
|
||||
alpha = alphas[:, t]
|
||||
|
||||
integrate += alpha
|
||||
list_fires.append(integrate)
|
||||
|
||||
fire_place = integrate >= threshold
|
||||
integrate = torch.where(fire_place,
|
||||
integrate - torch.ones([batch_size], device=alphas.device),
|
||||
integrate)
|
||||
|
||||
fires = torch.stack(list_fires, 1)
|
||||
return fires
|
||||
@ -1,8 +1,10 @@
|
||||
|
||||
from rapid_paraformer import Paraformer
|
||||
from rapid_paraformer import BiCifParaformer
|
||||
|
||||
model_dir = "/Users/shixian/code/funasr2/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
|
||||
model = Paraformer(model_dir, batch_size=1)
|
||||
model_dir = "/Users/shixian/code/funasr2/export/damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
|
||||
# model = Paraformer(model_dir, batch_size=1)
|
||||
model = BiCifParaformer(model_dir, batch_size=1)
|
||||
|
||||
wav_path = ['/Users/shixian/code/funasr2/export/damo/speech_paraformer-tiny-commandword_asr_nat-zh-cn-16k-vocab544-pytorch/example/asr_example.wav']
|
||||
|
||||
|
||||
@ -2,3 +2,4 @@
|
||||
# @Author: SWHL
|
||||
# @Contact: liekkaskono@163.com
|
||||
from .paraformer_onnx import Paraformer
|
||||
from .paraformer_onnx import BiCifParaformer
|
||||
|
||||
@ -5,6 +5,7 @@ import os.path
|
||||
from pathlib import Path
|
||||
from typing import List, Union, Tuple
|
||||
|
||||
import copy
|
||||
import librosa
|
||||
import numpy as np
|
||||
|
||||
@ -13,6 +14,7 @@ from .utils.utils import (CharTokenizer, Hypothesis, ONNXRuntimeError,
|
||||
read_yaml)
|
||||
from .utils.postprocess_utils import sentence_postprocess
|
||||
from .utils.frontend import WavFrontend
|
||||
from funasr.utils.timestamp_tools import time_stamp_lfr6_pl
|
||||
|
||||
logging = get_logger()
|
||||
|
||||
@ -134,8 +136,67 @@ class Paraformer():
|
||||
|
||||
# Change integer-ids to tokens
|
||||
token = self.converter.ids2tokens(token_int)
|
||||
token = token[:valid_token_num-1]
|
||||
# token = token[:valid_token_num-1]
|
||||
texts = sentence_postprocess(token)
|
||||
text = texts[0]
|
||||
# text = self.tokenizer.tokens2text(token)
|
||||
return text
|
||||
|
||||
|
||||
class BiCifParaformer(Paraformer):
|
||||
def infer(self, feats: np.ndarray,
|
||||
feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
am_scores, token_nums, us_alphas, us_cif_peak = self.ort_infer([feats, feats_len])
|
||||
return am_scores, token_nums, us_alphas, us_cif_peak
|
||||
def __call__(self, wav_content: Union[str, np.ndarray, List[str]], **kwargs) -> List:
|
||||
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
|
||||
waveform_nums = len(waveform_list)
|
||||
|
||||
asr_res = []
|
||||
for beg_idx in range(0, waveform_nums, self.batch_size):
|
||||
res = {}
|
||||
end_idx = min(waveform_nums, beg_idx + self.batch_size)
|
||||
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
|
||||
am_scores, valid_token_lens, us_alphas, us_cif_peak = self.infer(feats, feats_len)
|
||||
|
||||
try:
|
||||
am_scores, valid_token_lens, us_alphas, us_cif_peak = self.infer(feats, feats_len)
|
||||
except ONNXRuntimeError:
|
||||
#logging.warning(traceback.format_exc())
|
||||
logging.warning("input wav is silence or noise")
|
||||
preds = ['']
|
||||
else:
|
||||
token = self.decode(am_scores, valid_token_lens)
|
||||
timestamp = time_stamp_lfr6_pl(us_alphas, us_cif_peak, copy.copy(token[0]), log=False)
|
||||
texts = sentence_postprocess(token[0], timestamp)
|
||||
# texts = sentence_postprocess(token[0])
|
||||
text = texts[0]
|
||||
res['text'] = text
|
||||
res['timestamp'] = timestamp
|
||||
asr_res.append(res)
|
||||
|
||||
return asr_res
|
||||
|
||||
def decode_one(self,
|
||||
am_score: np.ndarray,
|
||||
valid_token_num: int) -> List[str]:
|
||||
yseq = am_score.argmax(axis=-1)
|
||||
score = am_score.max(axis=-1)
|
||||
score = np.sum(score, axis=-1)
|
||||
|
||||
# pad with mask tokens to ensure compatibility with sos/eos tokens
|
||||
# asr_model.sos:1 asr_model.eos:2
|
||||
yseq = np.array([1] + yseq.tolist() + [2])
|
||||
hyp = Hypothesis(yseq=yseq, score=score)
|
||||
|
||||
# remove sos/eos and get results
|
||||
last_pos = -1
|
||||
token_int = hyp.yseq[1:last_pos].tolist()
|
||||
|
||||
# remove blank symbol id, which is assumed to be 0
|
||||
token_int = list(filter(lambda x: x not in (0, 2), token_int))
|
||||
|
||||
# Change integer-ids to tokens
|
||||
token = self.converter.ids2tokens(token_int)
|
||||
# token = token[:valid_token_num-1]
|
||||
return token
|
||||
@ -4,6 +4,7 @@ import logging
|
||||
import numpy as np
|
||||
from typing import Any, List, Tuple, Union
|
||||
|
||||
|
||||
def time_stamp_lfr6_pl(us_alphas, us_cif_peak, char_list, begin_time=0.0, end_time=None):
|
||||
if not len(char_list):
|
||||
return []
|
||||
|
||||
Loading…
Reference in New Issue
Block a user