FunASR/funasr/export/models/encoder/conformer_encoder.py
2023-02-27 16:55:06 +08:00

107 lines
3.8 KiB
Python

import torch
import torch.nn as nn
from funasr.export.utils.torch_function import MakePadMask
from funasr.export.utils.torch_function import sequence_mask
from funasr.modules.attention import MultiHeadedAttentionSANM
from funasr.export.models.modules.multihead_att import MultiHeadedAttentionSANM as MultiHeadedAttentionSANM_export
from funasr.export.models.modules.encoder_layer import EncoderLayerSANM as EncoderLayerSANM_export
from funasr.export.models.modules.encoder_layer import EncoderLayerConformer as EncoderLayerConformer_export
from funasr.modules.positionwise_feed_forward import PositionwiseFeedForward
from funasr.export.models.modules.feedforward import PositionwiseFeedForward as PositionwiseFeedForward_export
from funasr.export.models.encoder.sanm_encoder import SANMEncoder
from funasr.modules.attention import RelPositionMultiHeadedAttention
# from funasr.export.models.modules.multihead_att import RelPositionMultiHeadedAttention as RelPositionMultiHeadedAttention_export
from funasr.export.models.modules.multihead_att import OnnxRelPosMultiHeadedAttention as RelPositionMultiHeadedAttention_export
class ConformerEncoder(nn.Module):
def __init__(
self,
model,
max_seq_len=512,
feats_dim=560,
model_name='encoder',
onnx: bool = True,
):
super().__init__()
self.embed = model.embed
self.model = model
self.feats_dim = feats_dim
self._output_size = model._output_size
if onnx:
self.make_pad_mask = MakePadMask(max_seq_len, flip=False)
else:
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
for i, d in enumerate(self.model.encoders):
if isinstance(d.self_attn, MultiHeadedAttentionSANM):
d.self_attn = MultiHeadedAttentionSANM_export(d.self_attn)
if isinstance(d.self_attn, RelPositionMultiHeadedAttention):
d.self_attn = RelPositionMultiHeadedAttention_export(d.self_attn)
if isinstance(d.feed_forward, PositionwiseFeedForward):
d.feed_forward = PositionwiseFeedForward_export(d.feed_forward)
self.model.encoders[i] = EncoderLayerConformer_export(d)
self.model_name = model_name
self.num_heads = model.encoders[0].self_attn.h
self.hidden_size = model.encoders[0].self_attn.linear_out.out_features
def prepare_mask(self, mask):
if len(mask.shape) == 2:
mask = 1 - mask[:, None, None, :]
elif len(mask.shape) == 3:
mask = 1 - mask[:, None, :]
return mask * -10000.0
def forward(self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
):
speech = speech * self._output_size ** 0.5
mask = self.make_pad_mask(speech_lengths)
mask = self.prepare_mask(mask)
if self.embed is None:
xs_pad = speech
else:
xs_pad = self.embed(speech)
encoder_outs = self.model.encoders(xs_pad, mask)
xs_pad, masks = encoder_outs[0], encoder_outs[1]
if isinstance(xs_pad, tuple):
xs_pad = xs_pad[0]
xs_pad = self.model.after_norm(xs_pad)
return xs_pad, speech_lengths
def get_output_size(self):
return self.model.encoders[0].size
def get_dummy_inputs(self):
feats = torch.randn(1, 100, self.feats_dim)
return (feats)
def get_input_names(self):
return ['feats']
def get_output_names(self):
return ['encoder_out', 'encoder_out_lens', 'predictor_weight']
def get_dynamic_axes(self):
return {
'feats': {
1: 'feats_length'
},
'encoder_out': {
1: 'enc_out_length'
},
'predictor_weight':{
1: 'pre_out_length'
}
}