SenseVoice/api.py
2025-08-11 16:10:41 +08:00

102 lines
2.6 KiB
Python

# Set the device with environment, default is cuda:0
# export SENSEVOICE_DEVICE=cuda:1
import os, re
from fastapi import FastAPI, File, Form, UploadFile
from fastapi.responses import HTMLResponse
from typing_extensions import Annotated
from typing import List
from enum import Enum
import torchaudio
from model import SenseVoiceSmall
from funasr.utils.postprocess_utils import rich_transcription_postprocess
from io import BytesIO
TARGET_FS = 16000
class Language(str, Enum):
auto = "auto"
zh = "zh"
en = "en"
yue = "yue"
ja = "ja"
ko = "ko"
nospeech = "nospeech"
model_dir = "iic/SenseVoiceSmall"
m, kwargs = SenseVoiceSmall.from_pretrained(model=model_dir, device=os.getenv("SENSEVOICE_DEVICE", "cuda:0"))
m.eval()
regex = r"<\|.*\|>"
app = FastAPI()
@app.get("/", response_class=HTMLResponse)
async def root():
return """
<!DOCTYPE html>
<html>
<head>
<meta charset=utf-8>
<title>Api information</title>
</head>
<body>
<a href='./docs'>Documents of API</a>
</body>
</html>
"""
@app.post("/api/v1/asr")
async def turn_audio_to_text(
files: Annotated[List[UploadFile], File(description="wav or mp3 audios in 16KHz")],
keys: Annotated[str, Form(description="name of each audio joined with comma")] = None,
lang: Annotated[Language, Form(description="language of audio content")] = "auto",
):
audios = []
for file in files:
file_io = BytesIO(await file.read())
data_or_path_or_list, audio_fs = torchaudio.load(file_io)
# transform to target sample
if audio_fs != TARGET_FS:
resampler = torchaudio.transforms.Resample(orig_freq=audio_fs, new_freq=TARGET_FS)
data_or_path_or_list = resampler(data_or_path_or_list)
data_or_path_or_list = data_or_path_or_list.mean(0)
audios.append(data_or_path_or_list)
if lang == "":
lang = "auto"
if not keys:
key = [f.filename for f in files]
else:
key = keys.split(",")
res = m.inference(
data_in=audios,
language=lang, # "zh", "en", "yue", "ja", "ko", "nospeech"
use_itn=False,
ban_emo_unk=False,
key=key,
fs=TARGET_FS,
**kwargs,
)
if len(res) == 0:
return {"result": []}
for it in res[0]:
it["raw_text"] = it["text"]
it["clean_text"] = re.sub(regex, "", it["text"], 0, re.MULTILINE)
it["text"] = rich_transcription_postprocess(it["text"])
return {"result": res[0]}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=50000)