Fix: api audio_fs is inconsistent

This commit is contained in:
yzz 2025-08-11 16:03:05 +08:00
parent 98e97e6216
commit 84b75f4d5e

39
api.py
View File

@ -2,7 +2,7 @@
# export SENSEVOICE_DEVICE=cuda:1
import os, re
from fastapi import FastAPI, File, Form
from fastapi import FastAPI, File, Form, UploadFile
from fastapi.responses import HTMLResponse
from typing_extensions import Annotated
from typing import List
@ -12,6 +12,8 @@ from model import SenseVoiceSmall
from funasr.utils.postprocess_utils import rich_transcription_postprocess
from io import BytesIO
TARGET_FS = 16000
class Language(str, Enum):
auto = "auto"
@ -22,6 +24,7 @@ class Language(str, Enum):
ko = "ko"
nospeech = "nospeech"
model_dir = "iic/SenseVoiceSmall"
m, kwargs = SenseVoiceSmall.from_pretrained(model=model_dir, device=os.getenv("SENSEVOICE_DEVICE", "cuda:0"))
m.eval()
@ -46,29 +49,41 @@ async def root():
</html>
"""
@app.post("/api/v1/asr")
async def turn_audio_to_text(files: Annotated[List[bytes], File(description="wav or mp3 audios in 16KHz")], keys: Annotated[str, Form(description="name of each audio joined with comma")], lang: Annotated[Language, Form(description="language of audio content")] = "auto"):
async def turn_audio_to_text(
files: Annotated[List[UploadFile], File(description="wav or mp3 audios in 16KHz")],
keys: Annotated[str, Form(description="name of each audio joined with comma")] = None,
lang: Annotated[Language, Form(description="language of audio content")] = "auto",
):
audios = []
audio_fs = 0
for file in files:
file_io = BytesIO(file)
file_io = BytesIO(await file.read())
data_or_path_or_list, audio_fs = torchaudio.load(file_io)
# transform to target sample
if audio_fs != TARGET_FS:
resampler = torchaudio.transforms.Resample(orig_freq=audio_fs, new_freq=TARGET_FS)
data_or_path_or_list = resampler(data_or_path_or_list)
data_or_path_or_list = data_or_path_or_list.mean(0)
audios.append(data_or_path_or_list)
file_io.close()
if lang == "":
lang = "auto"
if keys == "":
key = ["wav_file_tmp_name"]
if not keys:
key = [f.filename for f in files]
else:
key = keys.split(",")
res = m.inference(
data_in=audios,
language=lang, # "zh", "en", "yue", "ja", "ko", "nospeech"
language=lang, # "zh", "en", "yue", "ja", "ko", "nospeech"
use_itn=False,
ban_emo_unk=False,
key=key,
fs=audio_fs,
fs=TARGET_FS,
**kwargs,
)
if len(res) == 0:
@ -78,3 +93,9 @@ async def turn_audio_to_text(files: Annotated[List[bytes], File(description="wav
it["clean_text"] = re.sub(regex, "", it["text"], 0, re.MULTILINE)
it["text"] = rich_transcription_postprocess(it["text"])
return {"result": res[0]}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=50000)