| .. | ||
| finetune.py | ||
| infer.py | ||
| infer.sh | ||
| README.md | ||
| utils | ||
Speech Recognition
Note
: The modelscope pipeline supports all the models in model zoo to inference and finetine. Here we take the typic models as examples to demonstrate the usage.
Inference
Quick start
Paraformer Model
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
)
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
Paraformer-online Model
Streaming Decoding
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online',
model_revision='v1.0.6',
update_model=False,
mode='paraformer_streaming'
)
import soundfile
speech, sample_rate = soundfile.read("example/asr_example.wav")
chunk_size = [5, 10, 5] #[5, 10, 5] 600ms, [8, 8, 4] 480ms
param_dict = {"cache": dict(), "is_final": False, "chunk_size": chunk_size}
chunk_stride = chunk_size[1] * 960 # 600ms、480ms
# first chunk, 600ms
speech_chunk = speech[0:chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
# next chunk, 600ms
speech_chunk = speech[chunk_stride:chunk_stride+chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
Fake Streaming Decoding
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online',
model_revision='v1.0.6',
update_model=False,
mode="paraformer_fake_streaming"
)
audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav'
rec_result = inference_pipeline(audio_in=audio_in)
print(rec_result)
Full code of demo, please ref to demo
UniASR Model
There are three decoding mode for UniASR model(fast、normal、offline), for more model details, please refer to docs
decoding_model = "fast" # "fast"、"normal"、"offline"
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_UniASR_asr_2pass-minnan-16k-common-vocab3825',
param_dict={"decoding_model": decoding_model})
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
The decoding mode of fast and normal is fake streaming, which could be used for evaluating of recognition accuracy.
Full code of demo, please ref to demo
RNN-T-online model
Undo
MFCCA Model
For more model details, please refer to docs
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='NPU-ASLP/speech_mfcca_asr-zh-cn-16k-alimeeting-vocab4950',
model_revision='v3.0.0'
)
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
API-reference
Define pipeline
task:Tasks.auto_speech_recognitionmodel: model name in model zoo, or model path in local diskngpu:1(Default), decoding on GPU. If ngpu=0, decoding on CPUncpu:1(Default), sets the number of threads used for intraop parallelism on CPUoutput_dir:None(Default), the output path of results if setbatch_size:1(Default), batch size when decoding
Infer pipeline
audio_in: the input to decode, which could be:- wav_path,
e.g.: asr_example.wav, - pcm_path,
e.g.: asr_example.pcm, - audio bytes stream,
e.g.: bytes data from a microphone - audio sample point,
e.g.:audio, rate = soundfile.read("asr_example_zh.wav"), the dtype is numpy.ndarray or torch.Tensor - wav.scp, kaldi style wav list (
wav_id \t wav_path),e.g.:
In this case ofasr_example1 ./audios/asr_example1.wav asr_example2 ./audios/asr_example2.wavwav.scpinput,output_dirmust be set to save the output results- wav_path,
audio_fs: audio sampling rate, only set when audio_in is pcm audiooutput_dir: None (Default), the output path of results if set
Inference with multi-thread CPUs or multi GPUs
FunASR also offer recipes egs_modelscope/asr/TEMPLATE/infer.sh to decode with multi-thread CPUs, or multi GPUs.
Settings of infer.sh
model: model name in model zoo, or model path in local diskdata_dir: the dataset dir needs to includewav.scp. If${data_dir}/textis also exists, CER will be computedoutput_dir: output dir of the recognition resultsbatch_size:64(Default), batch size of inference on gpugpu_inference:true(Default), whether to perform gpu decoding, set false for CPU inferencegpuid_list:0,1(Default), which gpu_ids are used to infernjob: only used for CPU inference (gpu_inference=false),64(Default), the number of jobs for CPU decodingcheckpoint_dir: only used for infer finetuned models, the path dir of finetuned modelscheckpoint_name: only used for infer finetuned models,valid.cer_ctc.ave.pb(Default), which checkpoint is used to inferdecoding_mode:normal(Default), decoding mode for UniASR model(fast、normal、offline)hotword_txt:None(Default), hotword file for contextual paraformer model(the hotword file name ends with .txt")
Decode with multi GPUs:
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--gpu_inference true \
--gpuid_list "0,1"
Decode with multi-thread CPUs:
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64
Results
The decoding results can be found in $output_dir/1best_recog/text.cer, which includes recognition results of each sample and the CER metric of the whole test set.
If you decode the SpeechIO test sets, you can use textnorm with stage=3, and DETAILS.txt, RESULTS.txt record the results and CER after text normalization.
Finetune with pipeline
Quick start
import os
from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from modelscope.msdatasets.audio.asr_dataset import ASRDataset
def modelscope_finetune(params):
if not os.path.exists(params.output_dir):
os.makedirs(params.output_dir, exist_ok=True)
# dataset split ["train", "validation"]
ds_dict = ASRDataset.load(params.data_path, namespace='speech_asr')
kwargs = dict(
model=params.model,
data_dir=ds_dict,
dataset_type=params.dataset_type,
work_dir=params.output_dir,
batch_bins=params.batch_bins,
max_epoch=params.max_epoch,
lr=params.lr)
trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
trainer.train()
if __name__ == '__main__':
from funasr.utils.modelscope_param import modelscope_args
params = modelscope_args(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
params.output_dir = "./checkpoint" # 模型保存路径
params.data_path = "speech_asr_aishell1_trainsets" # 数据路径,可以为modelscope中已上传数据,也可以是本地数据
params.dataset_type = "small" # 小数据量设置small,若数据量大于1000小时,请使用large
params.batch_bins = 2000 # batch size,如果dataset_type="small",batch_bins单位为fbank特征帧数,如果dataset_type="large",batch_bins单位为毫秒,
params.max_epoch = 50 # 最大训练轮数
params.lr = 0.00005 # 设置学习率
modelscope_finetune(params)
python finetune.py &> log.txt &
Finetune with your data
-
Modify finetune training related parameters in finetune.py
output_dir: result dirdata_dir: the dataset dir needs to include files:train/wav.scp,train/text;validation/wav.scp,validation/textdataset_type: for dataset larger than 1000 hours, set aslarge, otherwise set assmallbatch_bins: batch size. For dataset_type issmall,batch_binsindicates the feature frames. For dataset_type islarge,batch_binsindicates the duration in msmax_epoch: number of training epochlr: learning rate
-
Training data formats:
cat ./example_data/text
BAC009S0002W0122 而 对 楼 市 成 交 抑 制 作 用 最 大 的 限 购
BAC009S0002W0123 也 成 为 地 方 政 府 的 眼 中 钉
english_example_1 hello world
english_example_2 go swim 去 游 泳
cat ./example_data/wav.scp
BAC009S0002W0122 /mnt/data/wav/train/S0002/BAC009S0002W0122.wav
BAC009S0002W0123 /mnt/data/wav/train/S0002/BAC009S0002W0123.wav
english_example_1 /mnt/data/wav/train/S0002/english_example_1.wav
english_example_2 /mnt/data/wav/train/S0002/english_example_2.wav
- Then you can run the pipeline to finetune with:
python finetune.py
If you want finetune with multi-GPUs, you could:
CUDA_VISIBLE_DEVICES=1,2 python -m torch.distributed.launch --nproc_per_node 2 finetune.py > log.txt 2>&1
Inference with your finetuned model
-
Setting parameters in egs_modelscope/asr/TEMPLATE/infer.sh is the same with docs,
modelis the model name from modelscope, which you finetuned. -
Decode with multi GPUs:
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--batch_size 64 \
--gpu_inference true \
--gpuid_list "0,1" \
--checkpoint_dir "./checkpoint" \
--checkpoint_name "valid.cer_ctc.ave.pb"
- Decode with multi-thread CPUs:
bash infer.sh \
--model "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64 \
--checkpoint_dir "./checkpoint" \
--checkpoint_name "valid.cer_ctc.ave.pb"