update infer recipe

This commit is contained in:
haoneng.lhn 2023-04-25 18:58:00 +08:00
parent a88a1d9938
commit 828948c2bc
7 changed files with 126 additions and 24 deletions

View File

@ -11,7 +11,7 @@ def modelscope_infer(args):
model=args.model,
output_dir=args.output_dir,
batch_size=args.batch_size,
param_dict={"decoding_model": args.decoding_mode}
param_dict={"decoding_model": args.decoding_mode, "hotword": args.hotword_txt}
)
inference_pipeline(audio_in=args.audio_in)
@ -21,6 +21,7 @@ if __name__ == "__main__":
parser.add_argument('--audio_in', type=str, default="./data/test/wav.scp")
parser.add_argument('--output_dir', type=str, default="./results/")
parser.add_argument('--decoding_mode', type=str, default="normal")
parser.add_argument('--hotword_txt', type=str, default=None)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--gpuid', type=str, default="0")
args = parser.parse_args()

View File

@ -0,0 +1,12 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
param_dict = dict()
param_dict['hotword'] = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/hotword.txt"
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404",
param_dict=param_dict)
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_hotword.wav')
print(rec_result)

View File

@ -1,21 +0,0 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
if __name__ == '__main__':
param_dict = dict()
param_dict['hotword'] = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/hotword.txt"
audio_in = "https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_hotword.wav"
output_dir = None
batch_size = 1
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404",
output_dir=output_dir,
batch_size=batch_size,
param_dict=param_dict)
rec_result = inference_pipeline(audio_in=audio_in)
print(rec_result)

View File

@ -0,0 +1,105 @@
#!/usr/bin/env bash
set -e
set -u
set -o pipefail
stage=1
stop_stage=2
model="damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404"
data_dir="./data/test"
output_dir="./results"
batch_size=64
gpu_inference=true # whether to perform gpu decoding
gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
checkpoint_dir=
checkpoint_name="valid.cer_ctc.ave.pb"
hotword_txt=None
. utils/parse_options.sh || exit 1;
if ${gpu_inference} == "true"; then
nj=$(echo $gpuid_list | awk -F "," '{print NF}')
else
nj=$njob
batch_size=1
gpuid_list=""
for JOB in $(seq ${nj}); do
gpuid_list=$gpuid_list"-1,"
done
fi
mkdir -p $output_dir/split
split_scps=""
for JOB in $(seq ${nj}); do
split_scps="$split_scps $output_dir/split/wav.$JOB.scp"
done
perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
if [ -n "${checkpoint_dir}" ]; then
python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
model=${checkpoint_dir}/${model}
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
echo "Decoding ..."
gpuid_list_array=(${gpuid_list//,/ })
for JOB in $(seq ${nj}); do
{
id=$((JOB-1))
gpuid=${gpuid_list_array[$id]}
mkdir -p ${output_dir}/output.$JOB
python infer.py \
--model ${model} \
--audio_in ${output_dir}/split/wav.$JOB.scp \
--output_dir ${output_dir}/output.$JOB \
--batch_size ${batch_size} \
--gpuid ${gpuid} \
--hotword_txt ${hotword_txt}
}&
done
wait
mkdir -p ${output_dir}/1best_recog
for f in token score text; do
if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then
for i in $(seq "${nj}"); do
cat "${output_dir}/output.${i}/1best_recog/${f}"
done | sort -k1 >"${output_dir}/1best_recog/${f}"
fi
done
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then
echo "Computing WER ..."
cp ${output_dir}/1best_recog/text ${output_dir}/1best_recog/text.proc
cp ${data_dir}/text ${output_dir}/1best_recog/text.ref
python utils/compute_wer.py ${output_dir}/1best_recog/text.ref ${output_dir}/1best_recog/text.proc ${output_dir}/1best_recog/text.cer
tail -n 3 ${output_dir}/1best_recog/text.cer
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ];then
echo "SpeechIO TIOBE textnorm"
echo "$0 --> Normalizing REF text ..."
./utils/textnorm_zh.py \
--has_key --to_upper \
${data_dir}/text \
${output_dir}/1best_recog/ref.txt
echo "$0 --> Normalizing HYP text ..."
./utils/textnorm_zh.py \
--has_key --to_upper \
${output_dir}/1best_recog/text.proc \
${output_dir}/1best_recog/rec.txt
grep -v $'\t$' ${output_dir}/1best_recog/rec.txt > ${output_dir}/1best_recog/rec_non_empty.txt
echo "$0 --> computing WER/CER and alignment ..."
./utils/error_rate_zh \
--tokenizer char \
--ref ${output_dir}/1best_recog/ref.txt \
--hyp ${output_dir}/1best_recog/rec_non_empty.txt \
${output_dir}/1best_recog/DETAILS.txt | tee ${output_dir}/1best_recog/RESULTS.txt
rm -rf ${output_dir}/1best_recog/rec.txt ${output_dir}/1best_recog/rec_non_empty.txt
fi

View File

@ -0,0 +1 @@
../../../../egs/aishell/transformer/utils

View File

@ -9,12 +9,13 @@ stop_stage=2
model="damo/speech_UniASR_asr_2pass-minnan-16k-common-vocab3825"
data_dir="./data/test"
output_dir="./results"
batch_size=64
batch_size=1
gpu_inference=true # whether to perform gpu decoding
gpuid_list="0,1" # set gpus, e.g., gpuid_list="0,1"
njob=64 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
checkpoint_dir=
checkpoint_name="valid.cer_ctc.ave.pb"
decoding_mode="normal"
. utils/parse_options.sh || exit 1;
@ -54,7 +55,8 @@ if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
--audio_in ${output_dir}/split/wav.$JOB.scp \
--output_dir ${output_dir}/output.$JOB \
--batch_size ${batch_size} \
--gpuid ${gpuid}
--gpuid ${gpuid} \
--decoding_mode ${decoding_mode}
}&
done
wait

View File

@ -0,0 +1 @@
../../../../egs/aishell/transformer/utils