FunASR/runtime/docs/lm_train_tutorial.md
Yabin Li 702ec03ad8
Dev new (#1065)
* add hotword for deploy_tools

* Support wfst decoder and contextual biasing (#1039)

* Support wfst decoder and contextual biasing

* Turn on fstbin compilation

---------

Co-authored-by: gongbo.gb <gongbo.gb@alibaba-inc.com>

* mv funasr/runtime runtime

* Fix crash caused by OOV in hotwords list

* funasr infer

* funasr infer

* funasr infer

* funasr infer

* funasr infer

* fix some bugs about fst hotword; support wfst for websocket server and clients; mv runtime out of funasr; modify relative docs

* del onnxruntime/include/gflags

* update tensor.h

* update run_server.sh

* update deploy tools

* update deploy tools

* update websocket-server

* update funasr-wss-server

* Remove self loop propagation

* Update websocket_protocol_zh.md

* Update websocket_protocol_zh.md

* update hotword protocol

* author zhaomingwork: change hotwords for h5 and java

* update hotword protocol

* catch exception for json_fst_hws

* update hotword on message

* update onnx benchmark for ngram&hotword

* update docs

* update funasr-wss-serve

* add NONE for LM_DIR

* update docs

* update run_server.sh

* add whats-new

* modify whats-new

* update whats-new

* update whats-new

* Support decoder option for beam searching

* update benchmark_onnx_cpp

* Support decoder option for websocket

* fix bug of CompileHotwordEmbedding

* update html client

* update docs

---------

Co-authored-by: gongbo.gb <35997837+aibulamusi@users.noreply.github.com>
Co-authored-by: gongbo.gb <gongbo.gb@alibaba-inc.com>
Co-authored-by: 游雁 <zhifu.gzf@alibaba-inc.com>
2023-11-07 18:34:29 +08:00

1.0 KiB
Raw Blame History

如何训练LM

训练脚本详见(点击此处

数据准备

# 下载: 示例训练语料text、lexicon 和 am建模单元units.txt
wget https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/requirements/lm.tar.gz
tar -zxvf lm.tar.gz

训练arpa

# make sure that srilm is installed
# the format of the text should be:
# BAC009S0002W0122 而 对 楼市 成交 抑制 作用 最 大 的 限 购
# BAC009S0002W0123 也 成为 地方 政府 的 眼中 钉

bash fst/train_lms.sh

生成lexicon

python3 fst/generate_lexicon.py lm/corpus.dict lm/lexicon.txt lm/lexicon.out

编译TLG.fst

# Compile the lexicon and token FSTs
fst/compile_dict_token.sh  lm lm/tmp lm/lang

# Compile the language-model FST and the final decoding graph TLG.fst
fst/make_decode_graph.sh lm lm/lang || exit 1;

# Collect resource files required for decoding
fst/collect_resource_file.sh lm lm/resource

#编译后的模型资源位于 lm/resource