mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
26 lines
1.0 KiB
Python
26 lines
1.0 KiB
Python
import onnxruntime
|
|
import numpy as np
|
|
|
|
|
|
if __name__ == '__main__':
|
|
onnx_path = "/mnt/workspace/export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/model.onnx"
|
|
sess = onnxruntime.InferenceSession(onnx_path)
|
|
input_name = [nd.name for nd in sess.get_inputs()]
|
|
output_name = [nd.name for nd in sess.get_outputs()]
|
|
|
|
def _get_feed_dict(feats_length):
|
|
|
|
return {'speech': np.random.rand(1, feats_length, 400).astype(np.float32),
|
|
'in_cache0': np.random.rand(1, 128, 19, 1).astype(np.float32),
|
|
'in_cache1': np.random.rand(1, 128, 19, 1).astype(np.float32),
|
|
'in_cache2': np.random.rand(1, 128, 19, 1).astype(np.float32),
|
|
'in_cache3': np.random.rand(1, 128, 19, 1).astype(np.float32),
|
|
}
|
|
|
|
def _run(feed_dict):
|
|
output = sess.run(output_name, input_feed=feed_dict)
|
|
for name, value in zip(output_name, output):
|
|
print('{}: {}'.format(name, value.shape))
|
|
|
|
_run(_get_feed_dict(100))
|
|
_run(_get_feed_dict(200)) |