FunASR/funasr/export/test/test_onnx_vad.py
2023-03-28 20:23:01 +08:00

26 lines
1.0 KiB
Python

import onnxruntime
import numpy as np
if __name__ == '__main__':
onnx_path = "/mnt/workspace/export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/model.onnx"
sess = onnxruntime.InferenceSession(onnx_path)
input_name = [nd.name for nd in sess.get_inputs()]
output_name = [nd.name for nd in sess.get_outputs()]
def _get_feed_dict(feats_length):
return {'speech': np.random.rand(1, feats_length, 400).astype(np.float32),
'in_cache0': np.random.rand(1, 128, 19, 1).astype(np.float32),
'in_cache1': np.random.rand(1, 128, 19, 1).astype(np.float32),
'in_cache2': np.random.rand(1, 128, 19, 1).astype(np.float32),
'in_cache3': np.random.rand(1, 128, 19, 1).astype(np.float32),
}
def _run(feed_dict):
output = sess.run(output_name, input_feed=feed_dict)
for name, value in zip(output_name, output):
print('{}: {}'.format(name, value.shape))
_run(_get_feed_dict(100))
_run(_get_feed_dict(200))