import onnxruntime import numpy as np if __name__ == '__main__': onnx_path = "/mnt/workspace/export/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/model.onnx" sess = onnxruntime.InferenceSession(onnx_path) input_name = [nd.name for nd in sess.get_inputs()] output_name = [nd.name for nd in sess.get_outputs()] def _get_feed_dict(feats_length): return {'speech': np.random.rand(1, feats_length, 400).astype(np.float32), 'in_cache0': np.random.rand(1, 128, 19, 1).astype(np.float32), 'in_cache1': np.random.rand(1, 128, 19, 1).astype(np.float32), 'in_cache2': np.random.rand(1, 128, 19, 1).astype(np.float32), 'in_cache3': np.random.rand(1, 128, 19, 1).astype(np.float32), } def _run(feed_dict): output = sess.run(output_name, input_feed=feed_dict) for name, value in zip(output_name, output): print('{}: {}'.format(name, value.shape)) _run(_get_feed_dict(100)) _run(_get_feed_dict(200))