FunASR/funasr/export/models/e2e_vad.py
2023-03-28 20:34:53 +08:00

61 lines
2.0 KiB
Python

from enum import Enum
from typing import List, Tuple, Dict, Any
import torch
from torch import nn
import math
from funasr.models.encoder.fsmn_encoder import FSMN
from funasr.export.models.encoder.fsmn_encoder import FSMN as FSMN_export
class E2EVadModel(nn.Module):
def __init__(self, model,
max_seq_len=512,
feats_dim=400,
model_name='model',
**kwargs,):
super(E2EVadModel, self).__init__()
self.feats_dim = feats_dim
self.max_seq_len = max_seq_len
self.model_name = model_name
if isinstance(model.encoder, FSMN):
self.encoder = FSMN_export(model.encoder)
else:
raise "unsupported encoder"
def forward(self, feats: torch.Tensor, *args, ):
scores, out_caches = self.encoder(feats, *args)
return scores, out_caches
def get_dummy_inputs(self, frame=30):
speech = torch.randn(1, frame, self.feats_dim)
in_cache0 = torch.randn(1, 128, 19, 1)
in_cache1 = torch.randn(1, 128, 19, 1)
in_cache2 = torch.randn(1, 128, 19, 1)
in_cache3 = torch.randn(1, 128, 19, 1)
return (speech, in_cache0, in_cache1, in_cache2, in_cache3)
# def get_dummy_inputs_txt(self, txt_file: str = "/mnt/workspace/data_fbank/0207/12345.wav.fea.txt"):
# import numpy as np
# fbank = np.loadtxt(txt_file)
# fbank_lengths = np.array([fbank.shape[0], ], dtype=np.int32)
# speech = torch.from_numpy(fbank[None, :, :].astype(np.float32))
# speech_lengths = torch.from_numpy(fbank_lengths.astype(np.int32))
# return (speech, speech_lengths)
def get_input_names(self):
return ['speech', 'in_cache0', 'in_cache1', 'in_cache2', 'in_cache3']
def get_output_names(self):
return ['logits', 'out_cache0', 'out_cache1', 'out_cache2', 'out_cache3']
def get_dynamic_axes(self):
return {
'speech': {
1: 'feats_length'
},
}