from enum import Enum from typing import List, Tuple, Dict, Any import torch from torch import nn import math from funasr.models.encoder.fsmn_encoder import FSMN from funasr.export.models.encoder.fsmn_encoder import FSMN as FSMN_export class E2EVadModel(nn.Module): def __init__(self, model, max_seq_len=512, feats_dim=400, model_name='model', **kwargs,): super(E2EVadModel, self).__init__() self.feats_dim = feats_dim self.max_seq_len = max_seq_len self.model_name = model_name if isinstance(model.encoder, FSMN): self.encoder = FSMN_export(model.encoder) else: raise "unsupported encoder" def forward(self, feats: torch.Tensor, *args, ): scores, out_caches = self.encoder(feats, *args) return scores, out_caches def get_dummy_inputs(self, frame=30): speech = torch.randn(1, frame, self.feats_dim) in_cache0 = torch.randn(1, 128, 19, 1) in_cache1 = torch.randn(1, 128, 19, 1) in_cache2 = torch.randn(1, 128, 19, 1) in_cache3 = torch.randn(1, 128, 19, 1) return (speech, in_cache0, in_cache1, in_cache2, in_cache3) # def get_dummy_inputs_txt(self, txt_file: str = "/mnt/workspace/data_fbank/0207/12345.wav.fea.txt"): # import numpy as np # fbank = np.loadtxt(txt_file) # fbank_lengths = np.array([fbank.shape[0], ], dtype=np.int32) # speech = torch.from_numpy(fbank[None, :, :].astype(np.float32)) # speech_lengths = torch.from_numpy(fbank_lengths.astype(np.int32)) # return (speech, speech_lengths) def get_input_names(self): return ['speech', 'in_cache0', 'in_cache1', 'in_cache2', 'in_cache3'] def get_output_names(self): return ['logits', 'out_cache0', 'out_cache1', 'out_cache2', 'out_cache3'] def get_dynamic_axes(self): return { 'speech': { 1: 'feats_length' }, }