mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
3.0 KiB
3.0 KiB
Speech Recognition
.. HINT::
The modelscope pipeline supports all the models in [model zoo] to inference and finetine. Here we take model of Paraformer and Paraformer-online as example to demonstrate the usage.
Inference
Quick start
Paraformer model
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
)
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
Paraformer-online model
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8404-online',
)
import soundfile
speech, sample_rate = soundfile.read("example/asr_example.wav")
param_dict = {"cache": dict(), "is_final": False}
chunk_stride = 7680# 480ms
# first chunk, 480ms
speech_chunk = speech[0:chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
# next chunk, 480ms
speech_chunk = speech[chunk_stride:chunk_stride+chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
Full code of demo, please ref to demo
API-reference
define pipeline
task:Tasks.auto_speech_recognitionmodel: model name in model zoo, or model path in local diskngpu: 1 (Defalut), decoding on GPU. If ngpu=0, decoding on CPUncpu: 1 (Defalut), sets the number of threads used for intraop parallelism on CPUoutput_dir: None (Defalut), the output path of results if setbatch_size: 1 (Defalut), batch size when decoding
infer pipeline
audio_in: the input to decode, which could be:- wav_path,
e.g.: asr_example.wav, - pcm_path,
e.g.: asr_example.pcm, - audio bytes stream,
e.g.: bytes data from a microphone - audio sample point,
e.g.:audio, rate = soundfile.read("asr_example_zh.wav"), the dtype is numpy.ndarray or torch.Tensor - wav.scp, kaldi style wav list (
wav_id \t wav_path``),e.g.`:
In this case ofasr_example1 ./audios/asr_example1.wav asr_example2 ./audios/asr_example2.wavwav.scpinput,output_dirmust be set to save the output results- wav_path,
audio_fs: audio sampling rate, only set when audio_in is pcm audio