FunASR/funasr/runtime/python/websocket/ws_server_online.py
2023-05-12 03:19:19 +00:00

102 lines
3.8 KiB
Python

import asyncio
import json
import websockets
import time
from queue import Queue
import threading
import logging
import tracemalloc
import numpy as np
from parse_args import args
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.logger import get_logger
from funasr.runtime.python.onnxruntime.funasr_onnx.utils.frontend import load_bytes
tracemalloc.start()
logger = get_logger(log_level=logging.CRITICAL)
logger.setLevel(logging.CRITICAL)
websocket_users = set()
print("model loading")
inference_pipeline_asr_online = pipeline(
task=Tasks.auto_speech_recognition,
model=args.asr_model_online,
ngpu=args.ngpu,
ncpu=args.ncpu,
model_revision='v1.0.4')
print("model loaded")
async def ws_serve(websocket, path):
frames_asr_online = []
global websocket_users
websocket_users.add(websocket)
websocket.param_dict_asr_online = {"cache": dict()}
print("new user connected",flush=True)
try:
async for message in websocket:
if isinstance(message,str):
messagejson = json.loads(message)
if "is_speaking" in messagejson:
websocket.is_speaking = messagejson["is_speaking"]
websocket.param_dict_asr_online["is_final"] = not websocket.is_speaking
if "is_finished" in messagejson:
websocket.is_speaking = False
websocket.param_dict_asr_online["is_final"] = True
if "chunk_interval" in messagejson:
websocket.chunk_interval=messagejson["chunk_interval"]
if "wav_name" in messagejson:
websocket.wav_name = messagejson.get("wav_name", "demo")
if "chunk_size" in messagejson:
websocket.param_dict_asr_online["chunk_size"] = messagejson["chunk_size"]
# if has bytes in buffer or message is bytes
if len(frames_asr_online)>0 or not isinstance(message,str):
if not isinstance(message,str):
frames_asr_online.append(message)
if len(frames_asr_online) % websocket.chunk_interval == 0 or not websocket.is_speaking:
audio_in = b"".join(frames_asr_online)
if not websocket.is_speaking:
#padding 0.5s at end gurantee that asr engine can fire out last word
audio_in=audio_in+b''.join(np.zeros(int(16000*0.5),dtype=np.int16))
await async_asr_online(websocket,audio_in)
frames_asr_online = []
except websockets.ConnectionClosed:
print("ConnectionClosed...", websocket_users)
websocket_users.remove(websocket)
except websockets.InvalidState:
print("InvalidState...")
except Exception as e:
print("Exception:", e)
async def async_asr_online(websocket,audio_in):
if len(audio_in) > 0:
audio_in = load_bytes(audio_in)
rec_result = inference_pipeline_asr_online(audio_in=audio_in,
param_dict=websocket.param_dict_asr_online)
if websocket.param_dict_asr_online["is_final"]:
websocket.param_dict_asr_online["cache"] = dict()
if "text" in rec_result:
if rec_result["text"] != "sil" and rec_result["text"] != "waiting_for_more_voice":
message = json.dumps({"mode": "online", "text": rec_result["text"], "wav_name": websocket.wav_name})
await websocket.send(message)
start_server = websockets.serve(ws_serve, args.host, args.port, subprotocols=["binary"], ping_interval=None)
asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()