import asyncio import json import websockets import time from queue import Queue import threading import logging import tracemalloc import numpy as np from parse_args import args from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope.utils.logger import get_logger from funasr.runtime.python.onnxruntime.funasr_onnx.utils.frontend import load_bytes tracemalloc.start() logger = get_logger(log_level=logging.CRITICAL) logger.setLevel(logging.CRITICAL) websocket_users = set() print("model loading") inference_pipeline_asr_online = pipeline( task=Tasks.auto_speech_recognition, model=args.asr_model_online, ngpu=args.ngpu, ncpu=args.ncpu, model_revision='v1.0.4') print("model loaded") async def ws_serve(websocket, path): frames_asr_online = [] global websocket_users websocket_users.add(websocket) websocket.param_dict_asr_online = {"cache": dict()} print("new user connected",flush=True) try: async for message in websocket: if isinstance(message,str): messagejson = json.loads(message) if "is_speaking" in messagejson: websocket.is_speaking = messagejson["is_speaking"] websocket.param_dict_asr_online["is_final"] = not websocket.is_speaking if "is_finished" in messagejson: websocket.is_speaking = False websocket.param_dict_asr_online["is_final"] = True if "chunk_interval" in messagejson: websocket.chunk_interval=messagejson["chunk_interval"] if "wav_name" in messagejson: websocket.wav_name = messagejson.get("wav_name", "demo") if "chunk_size" in messagejson: websocket.param_dict_asr_online["chunk_size"] = messagejson["chunk_size"] # if has bytes in buffer or message is bytes if len(frames_asr_online)>0 or not isinstance(message,str): if not isinstance(message,str): frames_asr_online.append(message) if len(frames_asr_online) % websocket.chunk_interval == 0 or not websocket.is_speaking: audio_in = b"".join(frames_asr_online) if not websocket.is_speaking: #padding 0.5s at end gurantee that asr engine can fire out last word audio_in=audio_in+b''.join(np.zeros(int(16000*0.5),dtype=np.int16)) await async_asr_online(websocket,audio_in) frames_asr_online = [] except websockets.ConnectionClosed: print("ConnectionClosed...", websocket_users) websocket_users.remove(websocket) except websockets.InvalidState: print("InvalidState...") except Exception as e: print("Exception:", e) async def async_asr_online(websocket,audio_in): if len(audio_in) > 0: audio_in = load_bytes(audio_in) rec_result = inference_pipeline_asr_online(audio_in=audio_in, param_dict=websocket.param_dict_asr_online) if websocket.param_dict_asr_online["is_final"]: websocket.param_dict_asr_online["cache"] = dict() if "text" in rec_result: if rec_result["text"] != "sil" and rec_result["text"] != "waiting_for_more_voice": message = json.dumps({"mode": "online", "text": rec_result["text"], "wav_name": websocket.wav_name}) await websocket.send(message) start_server = websockets.serve(ws_serve, args.host, args.port, subprotocols=["binary"], ping_interval=None) asyncio.get_event_loop().run_until_complete(start_server) asyncio.get_event_loop().run_forever()