FunASR/docs/modelscope_pipeline/quick_start.md
2023-04-25 14:49:24 +08:00

226 lines
9.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Quick Start
> **Note**:
> The modelscope pipeline supports all the models in [model zoo](https://alibaba-damo-academy.github.io/FunASR/en/modelscope_models.html#pretrained-models-on-modelscope) to inference and finetine. Here we take typic model as example to demonstrate the usage.
## Inference with pipeline
### Speech Recognition
#### Paraformer Model
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
)
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)
# {'text': '欢迎大家来体验达摩院推出的语音识别模型'}
```
### Voice Activity Detection
#### FSMN-VAD Model
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.logger import get_logger
import logging
logger = get_logger(log_level=logging.CRITICAL)
logger.setLevel(logging.CRITICAL)
inference_pipeline = pipeline(
task=Tasks.voice_activity_detection,
model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
)
segments_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav')
print(segments_result)
# {'text': [[70, 2340], [2620, 6200], [6480, 23670], [23950, 26250], [26780, 28990], [29950, 31430], [31750, 37600], [38210, 46900], [47310, 49630], [49910, 56460], [56740, 59540], [59820, 70450]]}
```
### Punctuation Restoration
#### CT_Transformer Model
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.punctuation,
model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
)
rec_result = inference_pipeline(text_in='我们都是木头人不会讲话不会动')
print(rec_result)
# {'text': '我们都是木头人,不会讲话,不会动。'}
```
### Timestamp Prediction
#### TP-Aligner Model
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.speech_timestamp,
model='damo/speech_timestamp_prediction-v1-16k-offline',)
rec_result = inference_pipeline(
audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_timestamps.wav',
text_in='一 个 东 太 平 洋 国 家 为 什 么 跑 到 西 太 平 洋 来 了 呢',)
print(rec_result)
# {'text': '<sil> 0.000 0.380;一 0.380 0.560;个 0.560 0.800;东 0.800 0.980;太 0.980 1.140;平 1.140 1.260;洋 1.260 1.440;国 1.440 1.680;家 1.680 1.920;<sil> 1.920 2.040;为 2.040 2.200;什 2.200 2.320;么 2.320 2.500;跑 2.500 2.680;到 2.680 2.860;西 2.860 3.040;太 3.040 3.200;平 3.200 3.380;洋 3.380 3.500;来 3.500 3.640;了 3.640 3.800;呢 3.800 4.150;<sil> 4.150 4.440;', 'timestamp': [[380, 560], [560, 800], [800, 980], [980, 1140], [1140, 1260], [1260, 1440], [1440, 1680], [1680, 1920], [2040, 2200], [2200, 2320], [2320, 2500], [2500, 2680], [2680, 2860], [2860, 3040], [3040, 3200], [3200, 3380], [3380, 3500], [3500, 3640], [3640, 3800], [3800, 4150]]}
```
### Speaker Verification
#### X-vector Model
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
import numpy as np
inference_sv_pipline = pipeline(
task=Tasks.speaker_verification,
model='damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch'
)
# embedding extract
spk_embedding = inference_sv_pipline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav')["spk_embedding"]
# speaker verification
rec_result = inference_sv_pipline(audio_in=('https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_enroll.wav','https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/sv_example_same.wav'))
print(rec_result["scores"][0])
# 0.8540499500025098
```
### Speaker Diarization
#### SOND Model
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_diar_pipline = pipeline(
mode="sond_demo",
num_workers=0,
task=Tasks.speaker_diarization,
diar_model_config="sond.yaml",
model='damo/speech_diarization_sond-en-us-callhome-8k-n16k4-pytorch',
model_revision="v1.0.3",
sv_model="damo/speech_xvector_sv-en-us-callhome-8k-spk6135-pytorch",
sv_model_revision="v1.0.0",
)
audio_list=[
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_data/record.wav",
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_data/spk_A.wav",
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_data/spk_B.wav",
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_data/spk_B1.wav"
]
results = inference_diar_pipline(audio_in=audio_list)
print(results)
# {'text': 'spk1 [(0.8, 1.84), (2.8, 6.16), (7.04, 10.64), (12.08, 12.8), (14.24, 15.6)]\nspk2 [(0.0, 1.12), (1.68, 3.2), (4.48, 7.12), (8.48, 9.04), (10.56, 14.48), (15.44, 16.0)]'}
```
### FAQ
#### How to switch device from GPU to CPU with pipeline
The pipeline defaults to decoding with GPU (`ngpu=1`) when GPU is available. If you want to switch to CPU, you could set `ngpu=0`
```python
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
ngpu=0,
)
```
#### How to infer from local model path
Download model to local dir, by modelscope-sdk
```python
from modelscope.hub.snapshot_download import snapshot_download
local_dir_root = "./models_from_modelscope"
model_dir = snapshot_download('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', cache_dir=local_dir_root)
```
Or download model to local dir, by git lfs
```shell
git lfs install
# git clone https://www.modelscope.cn/<namespace>/<model-name>.git
git clone https://www.modelscope.cn/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git
```
Infer with local model path
```python
local_dir_root = "./models_from_modelscope/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model=local_dir_root,
)
```
## Finetune with pipeline
### Speech Recognition
#### Paraformer Model
finetune.py
```python
import os
from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from modelscope.msdatasets.audio.asr_dataset import ASRDataset
def modelscope_finetune(params):
if not os.path.exists(params.output_dir):
os.makedirs(params.output_dir, exist_ok=True)
# dataset split ["train", "validation"]
ds_dict = ASRDataset.load(params.data_path, namespace='speech_asr')
kwargs = dict(
model=params.model,
data_dir=ds_dict,
dataset_type=params.dataset_type,
work_dir=params.output_dir,
batch_bins=params.batch_bins,
max_epoch=params.max_epoch,
lr=params.lr)
trainer = build_trainer(Trainers.speech_asr_trainer, default_args=kwargs)
trainer.train()
if __name__ == '__main__':
from funasr.utils.modelscope_param import modelscope_args
params = modelscope_args(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch")
params.output_dir = "./checkpoint" # 模型保存路径
params.data_path = "speech_asr_aishell1_trainsets" # 数据路径可以为modelscope中已上传数据也可以是本地数据
params.dataset_type = "small" # 小数据量设置small若数据量大于1000小时请使用large
params.batch_bins = 2000 # batch size如果dataset_type="small"batch_bins单位为fbank特征帧数如果dataset_type="large"batch_bins单位为毫秒
params.max_epoch = 50 # 最大训练轮数
params.lr = 0.00005 # 设置学习率
modelscope_finetune(params)
```
```shell
python finetune.py &> log.txt &
```
tail log.txt
```
[bach-gpu011024008134] 2023-04-23 18:59:13,976 (e2e_asr_paraformer:467) INFO: enable sampler in paraformer, sampling_ratio: 0.75
[bach-gpu011024008134] 2023-04-23 18:59:48,924 (trainer:777) INFO: 2epoch:train:1-50batch:50num_updates: iter_time=0.008, forward_time=0.302, loss_att=0.186, acc=0.942, loss_pre=0.005, loss=0.192, backward_time=0.231, optim_step_time=0.117, optim0_lr0=7.484e-06, train_time=0.753
[bach-gpu011024008134] 2023-04-23 19:00:23,869 (trainer:777) INFO: 2epoch:train:51-100batch:100num_updates: iter_time=1.152e-04, forward_time=0.275, loss_att=0.184, acc=0.945, loss_pre=0.005, loss=0.189, backward_time=0.234, optim_step_time=0.117, optim0_lr0=7.567e-06, train_time=0.699
[bach-gpu011024008134] 2023-04-23 19:00:58,463 (trainer:777) INFO: 2epoch:train:101-150batch:150num_updates: iter_time=1.123e-04, forward_time=0.271, loss_att=0.204, acc=0.942, loss_pre=0.005, loss=0.210, backward_time=0.231, optim_step_time=0.116, optim0_lr0=7.651e-06, train_time=0.692
```
### FAQ
### Multi GPUs training and distributed training
If you want finetune with multi-GPUs, you could:
```shell
CUDA_VISIBLE_DEVICES=1,2 python -m torch.distributed.launch --nproc_per_node 2 finetune.py > log.txt 2>&1
```