FunASR/docs/modelscope_pipeline/punc_pipeline.md
2023-04-27 17:25:30 +08:00

5.0 KiB
Raw Blame History

Punctuation Restoration

Voice Activity Detection

Note

: The modelscope pipeline supports all the models in model zoo to inference and finetune. Here we take the model of the punctuation model of CT-Transformer as example to demonstrate the usage.

Inference

Quick start

CT-Transformer model

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

inference_pipline = pipeline(
    task=Tasks.punctuation,
    model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
    model_revision=None)

rec_result = inference_pipline(text_in='example/punc_example.txt')
print(rec_result)
  • text二进制数据例如用户直接从文件里读出bytes数据
rec_result = inference_pipline(text_in='我们都是木头人不会讲话不会动')
rec_result = inference_pipline(text_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/punc_example.txt')

CT-Transformer Realtime model

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks

inference_pipeline = pipeline(
    task=Tasks.punctuation,
    model='damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727',
    model_revision=None,
)

inputs = "跨境河流是养育沿岸|人民的生命之源长期以来为帮助下游地区防灾减灾中方技术人员|在上游地区极为恶劣的自然条件下克服巨大困难甚至冒着生命危险|向印方提供汛期水文资料处理紧急事件中方重视印方在跨境河流问题上的关切|愿意进一步完善双方联合工作机制|凡是|中方能做的我们|都会去做而且会做得更好我请印度朋友们放心中国在上游的|任何开发利用都会经过科学|规划和论证兼顾上下游的利益"
vads = inputs.split("|")
rec_result_all="outputs:"
param_dict = {"cache": []}
for vad in vads:
    rec_result = inference_pipeline(text_in=vad, param_dict=param_dict)
    rec_result_all += rec_result['text']

print(rec_result_all)

Full code of demo, please ref to demo

API-reference

Define pipeline
  • task: Tasks.punctuation
  • model: model name in model zoo, or model path in local disk
  • ngpu: 1 (Default), decoding on GPU. If ngpu=0, decoding on CPU
  • output_dir: None (Default), the output path of results if set
  • model_revision: None (Default), setting the model version
Infer pipeline
  • text_in: the input to decode, which could be:
    • text bytes, e.g.: "我们都是木头人不会讲话不会动"
    • text file, e.g.: example/punc_example.txt In this case of text file input, output_dir must be set to save the output results
  • param_dict: reserving the cache which is necessary in realtime mode.

Inference with multi-thread CPUs or multi GPUs

FunASR also offer recipes egs_modelscope/punc/TEMPLATE/infer.sh to decode with multi-thread CPUs, or multi GPUs. It is an offline recipe and only support offline model.

  • Setting parameters in infer.sh

    • model: model name in model zoo, or model path in local disk
    • data_dir: the dataset dir needs to include punc.txt
    • output_dir: output dir of the recognition results
    • gpu_inference: true (Default), whether to perform gpu decoding, set false for CPU inference
    • gpuid_list: 0,1 (Default), which gpu_ids are used to infer
    • njob: only used for CPU inference (gpu_inference=false), 64 (Default), the number of jobs for CPU decoding
    • checkpoint_dir: only used for infer finetuned models, the path dir of finetuned models
    • checkpoint_name: only used for infer finetuned models, punc.pb (Default), which checkpoint is used to infer
  • Decode with multi GPUs:

    bash infer.sh \
    --model "damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" \
    --data_dir "./data/test" \
    --output_dir "./results" \
    --batch_size 64 \
    --gpu_inference true \
    --gpuid_list "0,1"
  • Decode with multi-thread CPUs:
    bash infer.sh \
    --model "damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" \
    --data_dir "./data/test" \
    --output_dir "./results" \
    --gpu_inference false \
    --njob 64

Finetune with pipeline

Quick start

Finetune with your data

Inference with your finetuned model