FunASR/funasr/models/transformer/encoder.py
zhifu gao 32e7836645
update with main (#1786)
* add cmakelist

* add paraformer-torch

* add debug for funasr-onnx-offline

* fix redefinition of jieba StdExtension.hpp

* add loading torch models

* update funasr-onnx-offline

* add SwitchArg for wss-server

* add SwitchArg for funasr-onnx-offline

* update cmakelist

* update funasr-onnx-offline-rtf

* add define condition

* add gpu define for offlne-stream

* update com define

* update offline-stream

* update cmakelist

* update func CompileHotwordEmbedding

* add timestamp for paraformer-torch

* add C10_USE_GLOG for paraformer-torch

* update paraformer-torch

* fix func FunASRWfstDecoderInit

* update model.h

* fix func FunASRWfstDecoderInit

* fix tpass_stream

* update paraformer-torch

* add bladedisc for funasr-onnx-offline

* update comdefine

* update funasr-wss-server

* add log for torch

* fix GetValue BLADEDISC

* fix log

* update cmakelist

* update warmup to 10

* update funasrruntime

* add batch_size for wss-server

* add batch for bins

* add batch for offline-stream

* add batch for paraformer

* add batch for offline-stream

* fix func SetBatchSize

* add SetBatchSize for model

* add SetBatchSize for model

* fix func Forward

* fix padding

* update funasrruntime

* add dec reset for batch

* set batch default value

* add argv for CutSplit

* sort frame_queue

* sorted msgs

* fix FunOfflineInfer

* add dynamic batch for fetch

* fix FetchDynamic

* update run_server.sh

* update run_server.sh

* cpp http post server support (#1739)

* add cpp http server

* add some comment

* remove some comments

* del debug infos

* restore run_server.sh

* adapt to new model struct

* 修复了onnxruntime在macos下编译失败的错误 (#1748)

* Add files via upload

增加macos的编译支持

* Add files via upload

增加macos支持

* Add files via upload

target_link_directories(funasr PUBLIC ${ONNXRUNTIME_DIR}/lib)
target_link_directories(funasr PUBLIC ${FFMPEG_DIR}/lib)
添加 if(APPLE) 限制

---------

Co-authored-by: Yabin Li <wucong.lyb@alibaba-inc.com>

* Delete docs/images/wechat.png

* Add files via upload

* fixed the issues about seaco-onnx timestamp

* fix bug (#1764)

当语音识别结果包含 `http` 时,标点符号预测会把它会被当成 url

* fix empty asr result (#1765)

解码结果为空的语音片段,text 用空字符串

* docs

* docs

* docs

* docs

* docs

* keep empty speech result (#1772)

* docs

* docs

* update wechat QRcode

* Add python funasr api support for websocket srv (#1777)

* add python funasr_api supoort

* change little to README.md

* add core tools stream

* modified a little

* fix bug for timeout

* support for buffer decode

* add ffmpeg decode for buffer

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* Dev gzf exp (#1785)

* resume from step

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* train_loss_avg train_acc_avg

* train_loss_avg train_acc_avg

* train_loss_avg train_acc_avg

* log step

* wav is not exist

* wav is not exist

* decoding

* decoding

* decoding

* wechat

* decoding key

* decoding key

* decoding key

* decoding key

* decoding key

* decoding key

* dynamic batch

* start_data_split_i=0

* total_time/accum_grad

* total_time/accum_grad

* total_time/accum_grad

* update avg slice

* update avg slice

* sensevoice sanm

* sensevoice sanm

* sensevoice sanm

---------

Co-authored-by: 北念 <lzr265946@alibaba-inc.com>

* auto frontend

---------

Co-authored-by: 雾聪 <wucong.lyb@alibaba-inc.com>
Co-authored-by: zhaomingwork <61895407+zhaomingwork@users.noreply.github.com>
Co-authored-by: szsteven008 <97944818+szsteven008@users.noreply.github.com>
Co-authored-by: Ephemeroptera <605686962@qq.com>
Co-authored-by: 彭震东 <zhendong.peng@qq.com>
Co-authored-by: Shi Xian <40013335+R1ckShi@users.noreply.github.com>
Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>
Co-authored-by: 北念 <lzr265946@alibaba-inc.com>
2024-06-06 09:54:35 +08:00

330 lines
13 KiB
Python

# Copyright 2019 Shigeki Karita
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Transformer encoder definition."""
from typing import List
from typing import Optional
from typing import Tuple
import torch
from torch import nn
import logging
from funasr.models.transformer.attention import MultiHeadedAttention
from funasr.models.transformer.embedding import PositionalEncoding
from funasr.models.transformer.layer_norm import LayerNorm
from funasr.models.transformer.utils.multi_layer_conv import Conv1dLinear
from funasr.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d
from funasr.models.transformer.utils.nets_utils import make_pad_mask
from funasr.models.transformer.positionwise_feed_forward import PositionwiseFeedForward
from funasr.models.transformer.utils.repeat import repeat
from funasr.models.ctc.ctc import CTC
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling2
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling6
from funasr.models.transformer.utils.subsampling import Conv2dSubsampling8
from funasr.models.transformer.utils.subsampling import TooShortUttError
from funasr.models.transformer.utils.subsampling import check_short_utt
from funasr.register import tables
class EncoderLayer(nn.Module):
"""Encoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool): Whether to use layer_norm before the first block.
concat_after (bool): Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
stochastic_depth_rate (float): Proability to skip this layer.
During training, the layer may skip residual computation and return input
as-is with given probability.
"""
def __init__(
self,
size,
self_attn,
feed_forward,
dropout_rate,
normalize_before=True,
concat_after=False,
stochastic_depth_rate=0.0,
):
"""Construct an EncoderLayer object."""
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.norm1 = LayerNorm(size)
self.norm2 = LayerNorm(size)
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear = nn.Linear(size + size, size)
self.stochastic_depth_rate = stochastic_depth_rate
def forward(self, x, mask, cache=None):
"""Compute encoded features.
Args:
x_input (torch.Tensor): Input tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time).
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
"""
skip_layer = False
# with stochastic depth, residual connection `x + f(x)` becomes
# `x <- x + 1 / (1 - p) * f(x)` at training time.
stoch_layer_coeff = 1.0
if self.training and self.stochastic_depth_rate > 0:
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
if skip_layer:
if cache is not None:
x = torch.cat([cache, x], dim=1)
return x, mask
residual = x
if self.normalize_before:
x = self.norm1(x)
if cache is None:
x_q = x
else:
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
x_q = x[:, -1:, :]
residual = residual[:, -1:, :]
mask = None if mask is None else mask[:, -1:, :]
if self.concat_after:
x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1)
x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
else:
x = residual + stoch_layer_coeff * self.dropout(self.self_attn(x_q, x, x, mask))
if not self.normalize_before:
x = self.norm1(x)
residual = x
if self.normalize_before:
x = self.norm2(x)
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm2(x)
if cache is not None:
x = torch.cat([cache, x], dim=1)
return x, mask
@tables.register("encoder_classes", "TransformerEncoder")
class TransformerEncoder(nn.Module):
"""Transformer encoder module.
Args:
input_size: input dim
output_size: dimension of attention
attention_heads: the number of heads of multi head attention
linear_units: the number of units of position-wise feed forward
num_blocks: the number of decoder blocks
dropout_rate: dropout rate
attention_dropout_rate: dropout rate in attention
positional_dropout_rate: dropout rate after adding positional encoding
input_layer: input layer type
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
normalize_before: whether to use layer_norm before the first block
concat_after: whether to concat attention layer's input and output
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied.
i.e. x -> x + att(x)
positionwise_layer_type: linear of conv1d
positionwise_conv_kernel_size: kernel size of positionwise conv1d layer
padding_idx: padding_idx for input_layer=embed
"""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: Optional[str] = "conv2d",
pos_enc_class=PositionalEncoding,
normalize_before: bool = True,
concat_after: bool = False,
positionwise_layer_type: str = "linear",
positionwise_conv_kernel_size: int = 1,
padding_idx: int = -1,
interctc_layer_idx: List[int] = [],
interctc_use_conditioning: bool = False,
):
super().__init__()
self._output_size = output_size
if input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(input_size, output_size),
torch.nn.LayerNorm(output_size),
torch.nn.Dropout(dropout_rate),
torch.nn.ReLU(),
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "conv2d":
self.embed = Conv2dSubsampling(input_size, output_size, dropout_rate)
elif input_layer == "conv2d2":
self.embed = Conv2dSubsampling2(input_size, output_size, dropout_rate)
elif input_layer == "conv2d6":
self.embed = Conv2dSubsampling6(input_size, output_size, dropout_rate)
elif input_layer == "conv2d8":
self.embed = Conv2dSubsampling8(input_size, output_size, dropout_rate)
elif input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer is None:
if input_size == output_size:
self.embed = None
else:
self.embed = torch.nn.Linear(input_size, output_size)
else:
raise ValueError("unknown input_layer: " + input_layer)
self.normalize_before = normalize_before
if positionwise_layer_type == "linear":
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
)
elif positionwise_layer_type == "conv1d":
positionwise_layer = MultiLayeredConv1d
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
elif positionwise_layer_type == "conv1d-linear":
positionwise_layer = Conv1dLinear
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
else:
raise NotImplementedError("Support only linear or conv1d.")
self.encoders = repeat(
num_blocks,
lambda lnum: EncoderLayer(
output_size,
MultiHeadedAttention(attention_heads, output_size, attention_dropout_rate),
positionwise_layer(*positionwise_layer_args),
dropout_rate,
normalize_before,
concat_after,
),
)
if self.normalize_before:
self.after_norm = LayerNorm(output_size)
self.interctc_layer_idx = interctc_layer_idx
if len(interctc_layer_idx) > 0:
assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks
self.interctc_use_conditioning = interctc_use_conditioning
self.conditioning_layer = None
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
ctc: CTC = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""Embed positions in tensor.
Args:
xs_pad: input tensor (B, L, D)
ilens: input length (B)
prev_states: Not to be used now.
Returns:
position embedded tensor and mask
"""
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
if self.embed is None:
xs_pad = xs_pad
elif (
isinstance(self.embed, Conv2dSubsampling)
or isinstance(self.embed, Conv2dSubsampling2)
or isinstance(self.embed, Conv2dSubsampling6)
or isinstance(self.embed, Conv2dSubsampling8)
):
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
if short_status:
raise TooShortUttError(
f"has {xs_pad.size(1)} frames and is too short for subsampling "
+ f"(it needs more than {limit_size} frames), return empty results",
xs_pad.size(1),
limit_size,
)
xs_pad, masks = self.embed(xs_pad, masks)
else:
xs_pad = self.embed(xs_pad)
intermediate_outs = []
if len(self.interctc_layer_idx) == 0:
xs_pad, masks = self.encoders(xs_pad, masks)
else:
for layer_idx, encoder_layer in enumerate(self.encoders):
xs_pad, masks = encoder_layer(xs_pad, masks)
if layer_idx + 1 in self.interctc_layer_idx:
encoder_out = xs_pad
# intermediate outputs are also normalized
if self.normalize_before:
encoder_out = self.after_norm(encoder_out)
intermediate_outs.append((layer_idx + 1, encoder_out))
if self.interctc_use_conditioning:
ctc_out = ctc.softmax(encoder_out)
xs_pad = xs_pad + self.conditioning_layer(ctc_out)
if self.normalize_before:
xs_pad = self.after_norm(xs_pad)
olens = masks.squeeze(1).sum(1)
if len(intermediate_outs) > 0:
return (xs_pad, intermediate_outs), olens, None
return xs_pad, olens, None