update with main (#1786)

* add cmakelist

* add paraformer-torch

* add debug for funasr-onnx-offline

* fix redefinition of jieba StdExtension.hpp

* add loading torch models

* update funasr-onnx-offline

* add SwitchArg for wss-server

* add SwitchArg for funasr-onnx-offline

* update cmakelist

* update funasr-onnx-offline-rtf

* add define condition

* add gpu define for offlne-stream

* update com define

* update offline-stream

* update cmakelist

* update func CompileHotwordEmbedding

* add timestamp for paraformer-torch

* add C10_USE_GLOG for paraformer-torch

* update paraformer-torch

* fix func FunASRWfstDecoderInit

* update model.h

* fix func FunASRWfstDecoderInit

* fix tpass_stream

* update paraformer-torch

* add bladedisc for funasr-onnx-offline

* update comdefine

* update funasr-wss-server

* add log for torch

* fix GetValue BLADEDISC

* fix log

* update cmakelist

* update warmup to 10

* update funasrruntime

* add batch_size for wss-server

* add batch for bins

* add batch for offline-stream

* add batch for paraformer

* add batch for offline-stream

* fix func SetBatchSize

* add SetBatchSize for model

* add SetBatchSize for model

* fix func Forward

* fix padding

* update funasrruntime

* add dec reset for batch

* set batch default value

* add argv for CutSplit

* sort frame_queue

* sorted msgs

* fix FunOfflineInfer

* add dynamic batch for fetch

* fix FetchDynamic

* update run_server.sh

* update run_server.sh

* cpp http post server support (#1739)

* add cpp http server

* add some comment

* remove some comments

* del debug infos

* restore run_server.sh

* adapt to new model struct

* 修复了onnxruntime在macos下编译失败的错误 (#1748)

* Add files via upload

增加macos的编译支持

* Add files via upload

增加macos支持

* Add files via upload

target_link_directories(funasr PUBLIC ${ONNXRUNTIME_DIR}/lib)
target_link_directories(funasr PUBLIC ${FFMPEG_DIR}/lib)
添加 if(APPLE) 限制

---------

Co-authored-by: Yabin Li <wucong.lyb@alibaba-inc.com>

* Delete docs/images/wechat.png

* Add files via upload

* fixed the issues about seaco-onnx timestamp

* fix bug (#1764)

当语音识别结果包含 `http` 时,标点符号预测会把它会被当成 url

* fix empty asr result (#1765)

解码结果为空的语音片段,text 用空字符串

* docs

* docs

* docs

* docs

* docs

* keep empty speech result (#1772)

* docs

* docs

* update wechat QRcode

* Add python funasr api support for websocket srv (#1777)

* add python funasr_api supoort

* change little to README.md

* add core tools stream

* modified a little

* fix bug for timeout

* support for buffer decode

* add ffmpeg decode for buffer

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* Dev gzf exp (#1785)

* resume from step

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* train_loss_avg train_acc_avg

* train_loss_avg train_acc_avg

* train_loss_avg train_acc_avg

* log step

* wav is not exist

* wav is not exist

* decoding

* decoding

* decoding

* wechat

* decoding key

* decoding key

* decoding key

* decoding key

* decoding key

* decoding key

* dynamic batch

* start_data_split_i=0

* total_time/accum_grad

* total_time/accum_grad

* total_time/accum_grad

* update avg slice

* update avg slice

* sensevoice sanm

* sensevoice sanm

* sensevoice sanm

---------

Co-authored-by: 北念 <lzr265946@alibaba-inc.com>

* auto frontend

---------

Co-authored-by: 雾聪 <wucong.lyb@alibaba-inc.com>
Co-authored-by: zhaomingwork <61895407+zhaomingwork@users.noreply.github.com>
Co-authored-by: szsteven008 <97944818+szsteven008@users.noreply.github.com>
Co-authored-by: Ephemeroptera <605686962@qq.com>
Co-authored-by: 彭震东 <zhendong.peng@qq.com>
Co-authored-by: Shi Xian <40013335+R1ckShi@users.noreply.github.com>
Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>
Co-authored-by: 北念 <lzr265946@alibaba-inc.com>
This commit is contained in:
zhifu gao 2024-06-06 09:54:35 +08:00 committed by GitHub
parent 3b0526e7be
commit 32e7836645
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 111 additions and 17 deletions

View File

@ -60,7 +60,7 @@ class AutoFrontend:
result_list = []
num_samples = len(data_list)
pbar = tqdm(colour="blue", total=num_samples + 1, dynamic_ncols=True)
# pbar = tqdm(colour="blue", total=num_samples + 1, dynamic_ncols=True)
time0 = time.perf_counter()
for beg_idx in range(0, num_samples, batch_size):
@ -95,15 +95,15 @@ class AutoFrontend:
"input": speech,
"input_len": speech_lengths,
"key": key_batch,
data_type: "fbank",
"data_type": "fbank",
}
result_list.append(batch)
pbar.update(1)
description = f"{meta_data}, "
pbar.set_description(description)
# pbar.update(1)
# description = f"{meta_data}, "
# pbar.set_description(description)
time_end = time.perf_counter()
pbar.set_description(f"time escaped total: {time_end - time0:0.3f}")
# pbar.set_description(f"time escaped total: {time_end - time0:0.3f}")
return result_list

View File

@ -147,7 +147,9 @@ class EspnetStyleBatchSampler(DistributedSampler):
start_idx = self.rank * batches_per_rank
end_idx = start_idx + batches_per_rank
rank_batches = buffer_batches[start_idx + self.start_step : end_idx]
self.batch_num = len(rank_batches)
logging.info(
f"rank: {self.rank}, dataloader start from step: {self.start_step}, batch_num: {end_idx-start_idx}, batch_num_after_step: {len(rank_batches)}"
)

View File

@ -1,5 +1,7 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from funasr.models.transformer.utils.nets_utils import make_pad_mask
from funasr.register import tables
@ -63,3 +65,64 @@ class EncoderProjectorQFormer(nn.Module):
query_proj = self.norm(self.linear(query_output.last_hidden_state))
return query_proj
@tables.register("adaptor_classes", "Transformer")
class Transformer(nn.Module):
def __init__(
self, downsample_rate=2, encoder_dim=1280, llm_dim=4096, ffn_dim: int = 2048, **kwargs
):
super().__init__()
self.k = downsample_rate
self.encoder_dim = encoder_dim
self.llm_dim = llm_dim
self.linear1 = nn.Linear(self.encoder_dim * self.k, ffn_dim)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(ffn_dim, self.llm_dim)
from funasr.models.transformer.encoder import EncoderLayer
from funasr.models.transformer.attention import MultiHeadedAttention
from funasr.models.transformer.positionwise_feed_forward import PositionwiseFeedForward
self.blocks = nn.ModuleList(
[
EncoderLayer(
llm_dim,
MultiHeadedAttention(
kwargs.get("attention_heads", 8),
llm_dim,
kwargs.get("attention_dropout_rate", 0.0),
),
PositionwiseFeedForward(
llm_dim,
llm_dim // 4,
kwargs.get("dropout_rate", 0.0),
),
kwargs.get("dropout_rate", 0.0),
)
for i in range(kwargs.get("n_layer", 2))
]
)
def forward(self, x, ilens=None):
batch_size, seq_len, dim = x.size()
# num_frames_to_discard = seq_len % self.k
chunk_num = (seq_len - 1) // self.k + 1
pad_num = chunk_num * self.k - seq_len
x = F.pad(x, (0, 0, 0, pad_num, 0, 0), value=0.0)
# if num_frames_to_discard > 0:
# x = x[:, :-num_frames_to_discard, :]
seq_len = x.size(1)
x = x.contiguous()
x = x.view(batch_size, chunk_num, dim * self.k)
x = self.linear1(x)
x = self.relu(x)
x = self.linear2(x)
olens = None
olens = (ilens - 1) // self.k + 1
masks = (~make_pad_mask(olens)[:, None, :]).to(x.device)
for layer, block in enumerate(self.blocks):
x, masks = block(x, masks)
return x, olens

View File

@ -360,6 +360,7 @@ class SenseVoiceDecoder(nn.Module):
"""Score."""
ys_mask = subsequent_mask(len(ys), device=x.device).unsqueeze(0)
logp = self.forward(ys.unsqueeze(0), x.unsqueeze(0), cache=state)
logp = torch.log_softmax(logp, dim=-1)
return logp.squeeze(0)[-1, :], state

View File

@ -1264,15 +1264,29 @@ class SenseVoiceSANM(nn.Module):
if isinstance(task, str):
task = [task]
task = "".join([f"<|{x}|>" for x in task])
initial_prompt = kwargs.get("initial_prompt", f"<|startoftranscript|>{task}")
sos = kwargs.get("model_conf").get("sos")
if isinstance(sos, str):
initial_prompt = kwargs.get("initial_prompt", f"<|startoftranscript|>{task}")
language = DecodingOptions.get("language", None)
language = None if language == "auto" else language
language = DecodingOptions.get("language", None)
language = None if language == "auto" else language
sos = f"{initial_prompt}<|{language}|>" if language is not None else initial_prompt
sos_int = tokenizer.encode(sos, allowed_special="all")
sos = f"{initial_prompt}<|{language}|>" if language is not None else initial_prompt
sos_int = tokenizer.encode(sos, allowed_special="all")
else:
language = DecodingOptions.get("language", None)
language = None if language == "auto" else language
initial_prompt = kwargs.get("initial_prompt", f"{task}")
initial_prompt_lid = f"{initial_prompt}<|{language}|>" if language is not None else initial_prompt
initial_prompt_lid_int = tokenizer.encode(initial_prompt_lid, allowed_special="all")
sos_int = [sos] + initial_prompt_lid_int
eos = kwargs.get("model_conf").get("eos")
eos_int = tokenizer.encode(eos, allowed_special="all")
if isinstance(eos, str):
eos_int = tokenizer.encode(eos, allowed_special="all")
else:
eos_int = [eos]
self.beam_search.sos = sos_int
self.beam_search.eos = eos_int[0]
@ -1298,7 +1312,7 @@ class SenseVoiceSANM(nn.Module):
self.beam_search.event_score_ga = DecodingOptions.get("gain_tokens_score", [1, 1, 1, 1])
encoder_out, encoder_out_lens = self.encode(
speech[None, :, :].permute(0, 2, 1), speech_lengths
speech[None, :, :], speech_lengths
)
if text_token_int is not None:

View File

@ -27,9 +27,24 @@ class ModelDimensions:
n_text_layer: int
# class LayerNorm(nn.LayerNorm):
# def forward(self, x: Tensor) -> Tensor:
# return super().forward(x.float()).type(x.dtype)
class LayerNorm(nn.LayerNorm):
def forward(self, x: Tensor) -> Tensor:
return super().forward(x.float()).type(x.dtype)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.layer_norm(
input.float(),
self.normalized_shape,
self.weight.float() if self.weight is not None else None,
self.bias.float() if self.bias is not None else None,
self.eps,
)
return output.type_as(input)
class Linear(nn.Linear):

View File

@ -64,7 +64,7 @@ class EncoderLayer(nn.Module):
stochastic_depth_rate=0.0,
):
"""Construct an EncoderLayer object."""
super(EncoderLayer, self).__init__()
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.norm1 = LayerNorm(size)

View File

@ -621,7 +621,6 @@ class Trainer:
self.train_acc_avg = train_acc_avg.detach().cpu().item() / self.world_size
def forward_step(self, model, batch, loss_dict={}):
dtype = torch.bfloat16
with maybe_autocast(dtype=self.dtype, use_deepspeed=self.use_deepspeed):
retval = model(**batch)