FunASR/runtime/triton_gpu/README.md
Yabin Li 702ec03ad8
Dev new (#1065)
* add hotword for deploy_tools

* Support wfst decoder and contextual biasing (#1039)

* Support wfst decoder and contextual biasing

* Turn on fstbin compilation

---------

Co-authored-by: gongbo.gb <gongbo.gb@alibaba-inc.com>

* mv funasr/runtime runtime

* Fix crash caused by OOV in hotwords list

* funasr infer

* funasr infer

* funasr infer

* funasr infer

* funasr infer

* fix some bugs about fst hotword; support wfst for websocket server and clients; mv runtime out of funasr; modify relative docs

* del onnxruntime/include/gflags

* update tensor.h

* update run_server.sh

* update deploy tools

* update deploy tools

* update websocket-server

* update funasr-wss-server

* Remove self loop propagation

* Update websocket_protocol_zh.md

* Update websocket_protocol_zh.md

* update hotword protocol

* author zhaomingwork: change hotwords for h5 and java

* update hotword protocol

* catch exception for json_fst_hws

* update hotword on message

* update onnx benchmark for ngram&hotword

* update docs

* update funasr-wss-serve

* add NONE for LM_DIR

* update docs

* update run_server.sh

* add whats-new

* modify whats-new

* update whats-new

* update whats-new

* Support decoder option for beam searching

* update benchmark_onnx_cpp

* Support decoder option for websocket

* fix bug of CompileHotwordEmbedding

* update html client

* update docs

---------

Co-authored-by: gongbo.gb <35997837+aibulamusi@users.noreply.github.com>
Co-authored-by: gongbo.gb <gongbo.gb@alibaba-inc.com>
Co-authored-by: 游雁 <zhifu.gzf@alibaba-inc.com>
2023-11-07 18:34:29 +08:00

86 lines
3.1 KiB
Markdown

## Inference with Triton
### Steps:
1. Prepare model repo files
```sh
git-lfs install
git clone https://www.modelscope.cn/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git
pretrained_model_dir=$(pwd)/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch
cp $pretrained_model_dir/am.mvn ./model_repo_paraformer_large_offline/feature_extractor/
cp $pretrained_model_dir/config.yaml ./model_repo_paraformer_large_offline/feature_extractor/
# Refer here to get model.onnx (https://github.com/alibaba-damo-academy/FunASR/blob/main/funasr/export/README.md)
cp <exported_onnx_dir>/model.onnx ./model_repo_paraformer_large_offline/encoder/1/
```
Log of directory tree:
```sh
model_repo_paraformer_large_offline/
|-- encoder
| |-- 1
| | `-- model.onnx
| `-- config.pbtxt
|-- feature_extractor
| |-- 1
| | `-- model.py
| |-- config.pbtxt
| |-- am.mvn
| `-- config.yaml
|-- infer_pipeline
| |-- 1
| `-- config.pbtxt
`-- scoring
|-- 1
| `-- model.py
`-- config.pbtxt
8 directories, 9 files
```
2. Follow below instructions to launch triton server
```sh
# using docker image Dockerfile/Dockerfile.server
docker build . -f Dockerfile/Dockerfile.server -t triton-paraformer:23.01
docker run -it --rm --name "paraformer_triton_server" --gpus all -v <path_host/model_repo_paraformer_large_offline>:/workspace/ --shm-size 1g --net host triton-paraformer:23.01
# launch the service
tritonserver --model-repository /workspace/model_repo_paraformer_large_offline \
--pinned-memory-pool-byte-size=512000000 \
--cuda-memory-pool-byte-size=0:1024000000
```
### Performance benchmark
Benchmark [speech_paraformer](https://www.modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary) based on Aishell1 test set with a single V100, the total audio duration is 36108.919 seconds.
```sh
# For client container:
docker run -it --rm --name "client_test" --net host --gpus all -v <path_host/triton_gpu/client>:/workpace/ soar97/triton-k2:22.12.1 # noqa
# For aishell manifests:
apt-get install git-lfs
git-lfs install
git clone https://huggingface.co/csukuangfj/aishell-test-dev-manifests
sudo mkdir -p /root/fangjun/open-source/icefall-aishell/egs/aishell/ASR/download/aishell
tar xf ./aishell-test-dev-manifests/data_aishell.tar.gz -C /root/fangjun/open-source/icefall-aishell/egs/aishell/ASR/download/aishell/ # noqa
serveraddr=localhost
manifest_path=/workspace/aishell-test-dev-manifests/data/fbank/aishell_cuts_test.jsonl.gz
num_task=60
python3 client/decode_manifest_triton.py \
--server-addr $serveraddr \
--compute-cer \
--model-name infer_pipeline \
--num-tasks $num_task \
--manifest-filename $manifest_path
```
(Note: The service has been fully warm up.)
|concurrent-tasks | processing time(s) | RTF |
|----------|--------------------|------------|
| 60 (onnx fp32) | 116.0 | 0.0032|
## Acknowledge
This part originates from NVIDIA CISI project. We also have TTS and NLP solutions deployed on triton inference server. If you are interested, please contact us.