FunASR/funasr/tasks/vad.py
jmwang66 98abc0e5ac
update setup (#686)
* update

* update setup

* update setup

* update setup

* update setup

* update setup

* update setup

* update

* update

* update setup
2023-06-29 16:30:39 +08:00

321 lines
10 KiB
Python

import argparse
import logging
import os
from pathlib import Path
from typing import Callable
from typing import Collection
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import numpy as np
import torch
import yaml
from funasr.datasets.collate_fn import CommonCollateFn
from funasr.layers.abs_normalize import AbsNormalize
from funasr.layers.global_mvn import GlobalMVN
from funasr.layers.utterance_mvn import UtteranceMVN
from funasr.models.e2e_vad import E2EVadModel
from funasr.models.encoder.fsmn_encoder import FSMN
from funasr.models.frontend.abs_frontend import AbsFrontend
from funasr.models.frontend.default import DefaultFrontend
from funasr.models.frontend.fused import FusedFrontends
from funasr.models.frontend.s3prl import S3prlFrontend
from funasr.models.frontend.wav_frontend import WavFrontend, WavFrontendOnline
from funasr.models.frontend.windowing import SlidingWindow
from funasr.models.specaug.abs_specaug import AbsSpecAug
from funasr.models.specaug.specaug import SpecAug
from funasr.models.specaug.specaug import SpecAugLFR
from funasr.tasks.abs_task import AbsTask
from funasr.train.class_choices import ClassChoices
from funasr.train.trainer import Trainer
from funasr.utils.types import float_or_none
from funasr.utils.types import int_or_none
from funasr.utils.types import str_or_none
frontend_choices = ClassChoices(
name="frontend",
classes=dict(
default=DefaultFrontend,
sliding_window=SlidingWindow,
s3prl=S3prlFrontend,
fused=FusedFrontends,
wav_frontend=WavFrontend,
wav_frontend_online=WavFrontendOnline,
),
type_check=AbsFrontend,
default="default",
)
specaug_choices = ClassChoices(
name="specaug",
classes=dict(
specaug=SpecAug,
specaug_lfr=SpecAugLFR,
),
type_check=AbsSpecAug,
default=None,
optional=True,
)
normalize_choices = ClassChoices(
"normalize",
classes=dict(
global_mvn=GlobalMVN,
utterance_mvn=UtteranceMVN,
),
type_check=AbsNormalize,
default=None,
optional=True,
)
model_choices = ClassChoices(
"model",
classes=dict(
e2evad=E2EVadModel,
),
type_check=object,
default="e2evad",
)
encoder_choices = ClassChoices(
"encoder",
classes=dict(
fsmn=FSMN,
),
type_check=torch.nn.Module,
default="fsmn",
)
class VADTask(AbsTask):
# If you need more than one optimizers, change this value
num_optimizers: int = 1
# Add variable objects configurations
class_choices_list = [
# --frontend and --frontend_conf
frontend_choices,
# --model and --model_conf
model_choices,
]
# If you need to modify train() or eval() procedures, change Trainer class here
trainer = Trainer
@classmethod
def add_task_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(description="Task related")
# NOTE(kamo): add_arguments(..., required=True) can't be used
# to provide --print_config mode. Instead of it, do as
# required = parser.get_default("required")
# required += ["token_list"]
group.add_argument(
"--init",
type=lambda x: str_or_none(x.lower()),
default=None,
help="The initialization method",
choices=[
"chainer",
"xavier_uniform",
"xavier_normal",
"kaiming_uniform",
"kaiming_normal",
None,
],
)
group.add_argument(
"--input_size",
type=int_or_none,
default=None,
help="The number of input dimension of the feature",
)
group = parser.add_argument_group(description="Preprocess related")
parser.add_argument(
"--speech_volume_normalize",
type=float_or_none,
default=None,
help="Scale the maximum amplitude to the given value.",
)
parser.add_argument(
"--rir_scp",
type=str_or_none,
default=None,
help="The file path of rir scp file.",
)
parser.add_argument(
"--rir_apply_prob",
type=float,
default=1.0,
help="THe probability for applying RIR convolution.",
)
parser.add_argument(
"--cmvn_file",
type=str_or_none,
default=None,
help="The file path of noise scp file.",
)
parser.add_argument(
"--noise_scp",
type=str_or_none,
default=None,
help="The file path of noise scp file.",
)
parser.add_argument(
"--noise_apply_prob",
type=float,
default=1.0,
help="The probability applying Noise adding.",
)
parser.add_argument(
"--noise_db_range",
type=str,
default="13_15",
help="The range of noise decibel level.",
)
for class_choices in cls.class_choices_list:
# Append --<name> and --<name>_conf.
# e.g. --encoder and --encoder_conf
class_choices.add_arguments(group)
@classmethod
def build_collate_fn(
cls, args: argparse.Namespace, train: bool
) -> Callable[
[Collection[Tuple[str, Dict[str, np.ndarray]]]],
Tuple[List[str], Dict[str, torch.Tensor]],
]:
# NOTE(kamo): int value = 0 is reserved by CTC-blank symbol
return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
@classmethod
def build_preprocess_fn(
cls, args: argparse.Namespace, train: bool
) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
# if args.use_preprocessor:
# retval = CommonPreprocessor(
# train=train,
# # NOTE(kamo): Check attribute existence for backward compatibility
# rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None,
# rir_apply_prob=args.rir_apply_prob
# if hasattr(args, "rir_apply_prob")
# else 1.0,
# noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None,
# noise_apply_prob=args.noise_apply_prob
# if hasattr(args, "noise_apply_prob")
# else 1.0,
# noise_db_range=args.noise_db_range
# if hasattr(args, "noise_db_range")
# else "13_15",
# speech_volume_normalize=args.speech_volume_normalize
# if hasattr(args, "rir_scp")
# else None,
# )
# else:
# retval = None
retval = None
return retval
@classmethod
def required_data_names(
cls, train: bool = True, inference: bool = False
) -> Tuple[str, ...]:
if not inference:
retval = ("speech", "text")
else:
# Recognition mode
retval = ("speech",)
return retval
@classmethod
def optional_data_names(
cls, train: bool = True, inference: bool = False
) -> Tuple[str, ...]:
retval = ()
return retval
@classmethod
def build_model(cls, args: argparse.Namespace):
# 4. Encoder
encoder_class = encoder_choices.get_class(args.encoder)
encoder = encoder_class(**args.encoder_conf)
# 5. Build model
try:
model_class = model_choices.get_class(args.model)
except AttributeError:
model_class = model_choices.get_class("e2evad")
# 1. frontend
if args.input_size is None:
# Extract features in the model
frontend_class = frontend_choices.get_class(args.frontend)
if args.frontend == 'wav_frontend':
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
else:
frontend = frontend_class(**args.frontend_conf)
input_size = frontend.output_size()
else:
# Give features from data-loader
args.frontend = None
args.frontend_conf = {}
frontend = None
input_size = args.input_size
model = model_class(encoder=encoder, vad_post_args=args.vad_post_conf, frontend=frontend)
return model
# ~~~~~~~~~ The methods below are mainly used for inference ~~~~~~~~~
@classmethod
def build_model_from_file(
cls,
config_file: Union[Path, str] = None,
model_file: Union[Path, str] = None,
device: str = "cpu",
cmvn_file: Union[Path, str] = None,
):
"""Build model from the files.
This method is used for inference or fine-tuning.
Args:
config_file: The yaml file saved when training.
model_file: The model file saved when training.
device: Device type, "cpu", "cuda", or "cuda:N".
"""
if config_file is None:
assert model_file is not None, (
"The argument 'model_file' must be provided "
"if the argument 'config_file' is not specified."
)
config_file = Path(model_file).parent / "config.yaml"
else:
config_file = Path(config_file)
with config_file.open("r", encoding="utf-8") as f:
args = yaml.safe_load(f)
# if cmvn_file is not None:
args["cmvn_file"] = cmvn_file
args = argparse.Namespace(**args)
model = cls.build_model(args)
model.to(device)
model_dict = dict()
model_name_pth = None
if model_file is not None:
logging.info("model_file is {}".format(model_file))
if device == "cuda":
device = f"cuda:{torch.cuda.current_device()}"
model_dir = os.path.dirname(model_file)
model_name = os.path.basename(model_file)
model_dict = torch.load(model_file, map_location=device)
model.encoder.load_state_dict(model_dict)
return model, args