import argparse import logging import os from pathlib import Path from typing import Callable from typing import Collection from typing import Dict from typing import List from typing import Optional from typing import Tuple from typing import Union import numpy as np import torch import yaml from funasr.datasets.collate_fn import CommonCollateFn from funasr.layers.abs_normalize import AbsNormalize from funasr.layers.global_mvn import GlobalMVN from funasr.layers.utterance_mvn import UtteranceMVN from funasr.models.e2e_vad import E2EVadModel from funasr.models.encoder.fsmn_encoder import FSMN from funasr.models.frontend.abs_frontend import AbsFrontend from funasr.models.frontend.default import DefaultFrontend from funasr.models.frontend.fused import FusedFrontends from funasr.models.frontend.s3prl import S3prlFrontend from funasr.models.frontend.wav_frontend import WavFrontend, WavFrontendOnline from funasr.models.frontend.windowing import SlidingWindow from funasr.models.specaug.abs_specaug import AbsSpecAug from funasr.models.specaug.specaug import SpecAug from funasr.models.specaug.specaug import SpecAugLFR from funasr.tasks.abs_task import AbsTask from funasr.train.class_choices import ClassChoices from funasr.train.trainer import Trainer from funasr.utils.types import float_or_none from funasr.utils.types import int_or_none from funasr.utils.types import str_or_none frontend_choices = ClassChoices( name="frontend", classes=dict( default=DefaultFrontend, sliding_window=SlidingWindow, s3prl=S3prlFrontend, fused=FusedFrontends, wav_frontend=WavFrontend, wav_frontend_online=WavFrontendOnline, ), type_check=AbsFrontend, default="default", ) specaug_choices = ClassChoices( name="specaug", classes=dict( specaug=SpecAug, specaug_lfr=SpecAugLFR, ), type_check=AbsSpecAug, default=None, optional=True, ) normalize_choices = ClassChoices( "normalize", classes=dict( global_mvn=GlobalMVN, utterance_mvn=UtteranceMVN, ), type_check=AbsNormalize, default=None, optional=True, ) model_choices = ClassChoices( "model", classes=dict( e2evad=E2EVadModel, ), type_check=object, default="e2evad", ) encoder_choices = ClassChoices( "encoder", classes=dict( fsmn=FSMN, ), type_check=torch.nn.Module, default="fsmn", ) class VADTask(AbsTask): # If you need more than one optimizers, change this value num_optimizers: int = 1 # Add variable objects configurations class_choices_list = [ # --frontend and --frontend_conf frontend_choices, # --model and --model_conf model_choices, ] # If you need to modify train() or eval() procedures, change Trainer class here trainer = Trainer @classmethod def add_task_arguments(cls, parser: argparse.ArgumentParser): group = parser.add_argument_group(description="Task related") # NOTE(kamo): add_arguments(..., required=True) can't be used # to provide --print_config mode. Instead of it, do as # required = parser.get_default("required") # required += ["token_list"] group.add_argument( "--init", type=lambda x: str_or_none(x.lower()), default=None, help="The initialization method", choices=[ "chainer", "xavier_uniform", "xavier_normal", "kaiming_uniform", "kaiming_normal", None, ], ) group.add_argument( "--input_size", type=int_or_none, default=None, help="The number of input dimension of the feature", ) group = parser.add_argument_group(description="Preprocess related") parser.add_argument( "--speech_volume_normalize", type=float_or_none, default=None, help="Scale the maximum amplitude to the given value.", ) parser.add_argument( "--rir_scp", type=str_or_none, default=None, help="The file path of rir scp file.", ) parser.add_argument( "--rir_apply_prob", type=float, default=1.0, help="THe probability for applying RIR convolution.", ) parser.add_argument( "--cmvn_file", type=str_or_none, default=None, help="The file path of noise scp file.", ) parser.add_argument( "--noise_scp", type=str_or_none, default=None, help="The file path of noise scp file.", ) parser.add_argument( "--noise_apply_prob", type=float, default=1.0, help="The probability applying Noise adding.", ) parser.add_argument( "--noise_db_range", type=str, default="13_15", help="The range of noise decibel level.", ) for class_choices in cls.class_choices_list: # Append -- and --_conf. # e.g. --encoder and --encoder_conf class_choices.add_arguments(group) @classmethod def build_collate_fn( cls, args: argparse.Namespace, train: bool ) -> Callable[ [Collection[Tuple[str, Dict[str, np.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]], ]: # NOTE(kamo): int value = 0 is reserved by CTC-blank symbol return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1) @classmethod def build_preprocess_fn( cls, args: argparse.Namespace, train: bool ) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]: # if args.use_preprocessor: # retval = CommonPreprocessor( # train=train, # # NOTE(kamo): Check attribute existence for backward compatibility # rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None, # rir_apply_prob=args.rir_apply_prob # if hasattr(args, "rir_apply_prob") # else 1.0, # noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None, # noise_apply_prob=args.noise_apply_prob # if hasattr(args, "noise_apply_prob") # else 1.0, # noise_db_range=args.noise_db_range # if hasattr(args, "noise_db_range") # else "13_15", # speech_volume_normalize=args.speech_volume_normalize # if hasattr(args, "rir_scp") # else None, # ) # else: # retval = None retval = None return retval @classmethod def required_data_names( cls, train: bool = True, inference: bool = False ) -> Tuple[str, ...]: if not inference: retval = ("speech", "text") else: # Recognition mode retval = ("speech",) return retval @classmethod def optional_data_names( cls, train: bool = True, inference: bool = False ) -> Tuple[str, ...]: retval = () return retval @classmethod def build_model(cls, args: argparse.Namespace): # 4. Encoder encoder_class = encoder_choices.get_class(args.encoder) encoder = encoder_class(**args.encoder_conf) # 5. Build model try: model_class = model_choices.get_class(args.model) except AttributeError: model_class = model_choices.get_class("e2evad") # 1. frontend if args.input_size is None: # Extract features in the model frontend_class = frontend_choices.get_class(args.frontend) if args.frontend == 'wav_frontend': frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf) else: frontend = frontend_class(**args.frontend_conf) input_size = frontend.output_size() else: # Give features from data-loader args.frontend = None args.frontend_conf = {} frontend = None input_size = args.input_size model = model_class(encoder=encoder, vad_post_args=args.vad_post_conf, frontend=frontend) return model # ~~~~~~~~~ The methods below are mainly used for inference ~~~~~~~~~ @classmethod def build_model_from_file( cls, config_file: Union[Path, str] = None, model_file: Union[Path, str] = None, device: str = "cpu", cmvn_file: Union[Path, str] = None, ): """Build model from the files. This method is used for inference or fine-tuning. Args: config_file: The yaml file saved when training. model_file: The model file saved when training. device: Device type, "cpu", "cuda", or "cuda:N". """ if config_file is None: assert model_file is not None, ( "The argument 'model_file' must be provided " "if the argument 'config_file' is not specified." ) config_file = Path(model_file).parent / "config.yaml" else: config_file = Path(config_file) with config_file.open("r", encoding="utf-8") as f: args = yaml.safe_load(f) # if cmvn_file is not None: args["cmvn_file"] = cmvn_file args = argparse.Namespace(**args) model = cls.build_model(args) model.to(device) model_dict = dict() model_name_pth = None if model_file is not None: logging.info("model_file is {}".format(model_file)) if device == "cuda": device = f"cuda:{torch.cuda.current_device()}" model_dir = os.path.dirname(model_file) model_name = os.path.basename(model_file) model_dict = torch.load(model_file, map_location=device) model.encoder.load_state_dict(model_dict) return model, args