mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
110 lines
4.2 KiB
Python
110 lines
4.2 KiB
Python
import torch
|
|
import copy
|
|
import logging
|
|
import numpy as np
|
|
from typing import Any, List, Tuple, Union
|
|
|
|
|
|
def time_stamp_lfr6_pl(us_alphas, us_cif_peak, char_list, begin_time=0.0, end_time=None):
|
|
if not len(char_list):
|
|
return []
|
|
START_END_THRESHOLD = 5
|
|
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
|
|
if len(us_alphas.shape) == 3:
|
|
alphas, cif_peak = us_alphas[0], us_cif_peak[0] # support inference batch_size=1 only
|
|
else:
|
|
alphas, cif_peak = us_alphas, us_cif_peak
|
|
num_frames = cif_peak.shape[0]
|
|
if char_list[-1] == '</s>':
|
|
char_list = char_list[:-1]
|
|
# char_list = [i for i in text]
|
|
timestamp_list = []
|
|
# for bicif model trained with large data, cif2 actually fires when a character starts
|
|
# so treat the frames between two peaks as the duration of the former token
|
|
fire_place = torch.where(cif_peak>1.0-1e-4)[0].cpu().numpy() - 1.5
|
|
num_peak = len(fire_place)
|
|
assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
|
|
# begin silence
|
|
if fire_place[0] > START_END_THRESHOLD:
|
|
char_list.insert(0, '<sil>')
|
|
timestamp_list.append([0.0, fire_place[0]*TIME_RATE])
|
|
# tokens timestamp
|
|
for i in range(len(fire_place)-1):
|
|
# the peak is always a little ahead of the start time
|
|
# timestamp_list.append([(fire_place[i]-1.2)*TIME_RATE, fire_place[i+1]*TIME_RATE])
|
|
timestamp_list.append([(fire_place[i])*TIME_RATE, fire_place[i+1]*TIME_RATE])
|
|
# cut the duration to token and sil of the 0-weight frames last long
|
|
# tail token and end silence
|
|
if num_frames - fire_place[-1] > START_END_THRESHOLD:
|
|
_end = (num_frames + fire_place[-1]) / 2
|
|
timestamp_list[-1][1] = _end*TIME_RATE
|
|
timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE])
|
|
char_list.append("<sil>")
|
|
else:
|
|
timestamp_list[-1][1] = num_frames*TIME_RATE
|
|
if begin_time: # add offset time in model with vad
|
|
for i in range(len(timestamp_list)):
|
|
timestamp_list[i][0] = timestamp_list[i][0] + begin_time / 1000.0
|
|
timestamp_list[i][1] = timestamp_list[i][1] + begin_time / 1000.0
|
|
res_txt = ""
|
|
for char, timestamp in zip(char_list, timestamp_list):
|
|
res_txt += "{} {} {};".format(char, timestamp[0], timestamp[1])
|
|
res = []
|
|
for char, timestamp in zip(char_list, timestamp_list):
|
|
if char != '<sil>':
|
|
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
|
|
return res
|
|
|
|
def time_stamp_sentence(punc_id_list, time_stamp_postprocessed, text_postprocessed):
|
|
res = []
|
|
if text_postprocessed is None:
|
|
return res
|
|
if time_stamp_postprocessed is None:
|
|
return res
|
|
if len(time_stamp_postprocessed) == 0:
|
|
return res
|
|
if len(text_postprocessed) == 0:
|
|
return res
|
|
if punc_id_list is None or len(punc_id_list) == 0:
|
|
res.append({
|
|
'text': text_postprocessed.split(),
|
|
"start": time_stamp_postprocessed[0][0],
|
|
"end": time_stamp_postprocessed[-1][1]
|
|
})
|
|
return res
|
|
if len(punc_id_list) != len(time_stamp_postprocessed):
|
|
res.append({
|
|
'text': text_postprocessed.split(),
|
|
"start": time_stamp_postprocessed[0][0],
|
|
"end": time_stamp_postprocessed[-1][1]
|
|
})
|
|
return res
|
|
|
|
sentence_text = ''
|
|
sentence_start = time_stamp_postprocessed[0][0]
|
|
texts = text_postprocessed.split()
|
|
for i in range(len(punc_id_list)):
|
|
sentence_text += texts[i]
|
|
if punc_id_list[i] == 2:
|
|
sentence_text += ','
|
|
res.append({
|
|
'text': sentence_text,
|
|
"start": sentence_start,
|
|
"end": time_stamp_postprocessed[i][1]
|
|
})
|
|
sentence_text = ''
|
|
sentence_start = time_stamp_postprocessed[i][1]
|
|
elif punc_id_list[i] == 3:
|
|
sentence_text += '.'
|
|
res.append({
|
|
'text': sentence_text,
|
|
"start": sentence_start,
|
|
"end": time_stamp_postprocessed[i][1]
|
|
})
|
|
sentence_text = ''
|
|
sentence_start = time_stamp_postprocessed[i][1]
|
|
return res
|
|
|
|
|
|
|