FunASR/funasr/utils/timestamp_tools.py

126 lines
4.8 KiB
Python

import torch
import copy
import logging
import numpy as np
from typing import Any, List, Tuple, Union
def ts_prediction_lfr6_standard(us_alphas,
us_cif_peak,
char_list,
vad_offset=0.0,
end_time=None,
force_time_shift=-1.5
):
if not len(char_list):
return []
START_END_THRESHOLD = 5
MAX_TOKEN_DURATION = 12
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
if len(us_alphas.shape) == 2:
alphas, cif_peak = us_alphas[0], us_cif_peak[0] # support inference batch_size=1 only
else:
alphas, cif_peak = us_alphas, us_cif_peak
num_frames = cif_peak.shape[0]
if char_list[-1] == '</s>':
char_list = char_list[:-1]
timestamp_list = []
new_char_list = []
# for bicif model trained with large data, cif2 actually fires when a character starts
# so treat the frames between two peaks as the duration of the former token
fire_place = torch.where(cif_peak>1.0-1e-4)[0].cpu().numpy() + force_time_shift # total offset
num_peak = len(fire_place)
assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
# begin silence
if fire_place[0] > START_END_THRESHOLD:
# char_list.insert(0, '<sil>')
timestamp_list.append([0.0, fire_place[0]*TIME_RATE])
new_char_list.append('<sil>')
# tokens timestamp
for i in range(len(fire_place)-1):
new_char_list.append(char_list[i])
if MAX_TOKEN_DURATION < 0 or fire_place[i+1] - fire_place[i] <= MAX_TOKEN_DURATION:
timestamp_list.append([fire_place[i]*TIME_RATE, fire_place[i+1]*TIME_RATE])
else:
# cut the duration to token and sil of the 0-weight frames last long
_split = fire_place[i] + MAX_TOKEN_DURATION
timestamp_list.append([fire_place[i]*TIME_RATE, _split*TIME_RATE])
timestamp_list.append([_split*TIME_RATE, fire_place[i+1]*TIME_RATE])
new_char_list.append('<sil>')
# tail token and end silence
# new_char_list.append(char_list[-1])
if num_frames - fire_place[-1] > START_END_THRESHOLD:
_end = (num_frames + fire_place[-1]) * 0.5
# _end = fire_place[-1]
timestamp_list[-1][1] = _end*TIME_RATE
timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE])
new_char_list.append("<sil>")
else:
timestamp_list[-1][1] = num_frames*TIME_RATE
if vad_offset: # add offset time in model with vad
for i in range(len(timestamp_list)):
timestamp_list[i][0] = timestamp_list[i][0] + vad_offset / 1000.0
timestamp_list[i][1] = timestamp_list[i][1] + vad_offset / 1000.0
res_txt = ""
for char, timestamp in zip(new_char_list, timestamp_list):
res_txt += "{} {} {};".format(char, str(timestamp[0]+0.0005)[:5], str(timestamp[1]+0.0005)[:5])
res = []
for char, timestamp in zip(new_char_list, timestamp_list):
if char != '<sil>':
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
return res_txt, res
def time_stamp_sentence(punc_id_list, time_stamp_postprocessed, text_postprocessed):
res = []
if text_postprocessed is None:
return res
if time_stamp_postprocessed is None:
return res
if len(time_stamp_postprocessed) == 0:
return res
if len(text_postprocessed) == 0:
return res
if punc_id_list is None or len(punc_id_list) == 0:
res.append({
'text': text_postprocessed.split(),
"start": time_stamp_postprocessed[0][0],
"end": time_stamp_postprocessed[-1][1]
})
return res
if len(punc_id_list) != len(time_stamp_postprocessed):
res.append({
'text': text_postprocessed.split(),
"start": time_stamp_postprocessed[0][0],
"end": time_stamp_postprocessed[-1][1]
})
return res
sentence_text = ''
sentence_start = time_stamp_postprocessed[0][0]
texts = text_postprocessed.split()
for i in range(len(punc_id_list)):
sentence_text += texts[i]
if punc_id_list[i] == 2:
sentence_text += ','
res.append({
'text': sentence_text,
"start": sentence_start,
"end": time_stamp_postprocessed[i][1]
})
sentence_text = ''
sentence_start = time_stamp_postprocessed[i][1]
elif punc_id_list[i] == 3:
sentence_text += '.'
res.append({
'text': sentence_text,
"start": sentence_start,
"end": time_stamp_postprocessed[i][1]
})
sentence_text = ''
sentence_start = time_stamp_postprocessed[i][1]
return res