update timestamp related codes and egs_modelscope

This commit is contained in:
shixian.shi 2023-03-13 15:21:13 +08:00
parent 2b1f8a1b23
commit 5a7ee30783
4 changed files with 46 additions and 79 deletions

View File

@ -42,7 +42,7 @@ from funasr.utils import asr_utils, wav_utils, postprocess_utils
from funasr.models.frontend.wav_frontend import WavFrontend
from funasr.models.e2e_asr_paraformer import BiCifParaformer, ContextualParaformer
from funasr.export.models.e2e_asr_paraformer import Paraformer as Paraformer_export
from funasr.utils.timestamp_tools import time_stamp_lfr6_pl, time_stamp_sentence
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
class Speech2Text:
@ -291,7 +291,10 @@ class Speech2Text:
text = None
if isinstance(self.asr_model, BiCifParaformer):
timestamp = time_stamp_lfr6_pl(us_alphas[i], us_cif_peak[i], copy.copy(token), begin_time, end_time)
_, timestamp = ts_prediction_lfr6_standard(us_alphas[i],
us_cif_peak[i],
copy.copy(token),
vad_offset=begin_time)
results.append((text, token, token_int, hyp, timestamp, enc_len_batch_total, lfr_factor))
else:
results.append((text, token, token_int, hyp, enc_len_batch_total, lfr_factor))

View File

@ -44,11 +44,10 @@ from funasr.utils import asr_utils, wav_utils, postprocess_utils
from funasr.models.frontend.wav_frontend import WavFrontend
from funasr.tasks.vad import VADTask
from funasr.bin.vad_inference import Speech2VadSegment
from funasr.utils.timestamp_tools import time_stamp_lfr6_pl
from funasr.utils.timestamp_tools import time_stamp_sentence, ts_prediction_lfr6_standard
from funasr.bin.punctuation_infer import Text2Punc
from funasr.models.e2e_asr_paraformer import BiCifParaformer, ContextualParaformer
from funasr.utils.timestamp_tools import time_stamp_sentence
header_colors = '\033[95m'
end_colors = '\033[0m'
@ -303,7 +302,10 @@ class Speech2Text:
text = None
if isinstance(self.asr_model, BiCifParaformer):
timestamp = time_stamp_lfr6_pl(us_alphas[i], us_cif_peak[i], copy.copy(token), begin_time, end_time)
_, timestamp = ts_prediction_lfr6_standard(us_alphas[i],
us_cif_peak[i],
copy.copy(token),
vad_offset=begin_time)
results.append((text, token, token_int, timestamp, enc_len_batch_total, lfr_factor))
else:
results.append((text, token, token_int, enc_len_batch_total, lfr_factor))

View File

@ -28,6 +28,8 @@ from funasr.utils.types import str2triple_str
from funasr.utils.types import str_or_none
from funasr.models.frontend.wav_frontend import WavFrontend
from funasr.text.token_id_converter import TokenIDConverter
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
header_colors = '\033[95m'
end_colors = '\033[0m'
@ -38,61 +40,6 @@ global_sample_rate: Union[int, Dict[Any, int]] = {
'model_fs': 16000
}
def time_stamp_lfr6_advance(us_alphas, us_cif_peak, char_list):
START_END_THRESHOLD = 5
MAX_TOKEN_DURATION = 12
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
if len(us_cif_peak.shape) == 2:
alphas, cif_peak = us_alphas[0], us_cif_peak[0] # support inference batch_size=1 only
else:
alphas, cif_peak = us_alphas, us_cif_peak
num_frames = cif_peak.shape[0]
if char_list[-1] == '</s>':
char_list = char_list[:-1]
# char_list = [i for i in text]
timestamp_list = []
new_char_list = []
# for bicif model trained with large data, cif2 actually fires when a character starts
# so treat the frames between two peaks as the duration of the former token
fire_place = torch.where(cif_peak>1.0-1e-4)[0].cpu().numpy() - 3.2 # total offset
num_peak = len(fire_place)
assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
# begin silence
if fire_place[0] > START_END_THRESHOLD:
# char_list.insert(0, '<sil>')
timestamp_list.append([0.0, fire_place[0]*TIME_RATE])
new_char_list.append('<sil>')
# tokens timestamp
for i in range(len(fire_place)-1):
new_char_list.append(char_list[i])
if MAX_TOKEN_DURATION < 0 or fire_place[i+1] - fire_place[i] < MAX_TOKEN_DURATION:
timestamp_list.append([fire_place[i]*TIME_RATE, fire_place[i+1]*TIME_RATE])
else:
# cut the duration to token and sil of the 0-weight frames last long
_split = fire_place[i] + MAX_TOKEN_DURATION
timestamp_list.append([fire_place[i]*TIME_RATE, _split*TIME_RATE])
timestamp_list.append([_split*TIME_RATE, fire_place[i+1]*TIME_RATE])
new_char_list.append('<sil>')
# tail token and end silence
# new_char_list.append(char_list[-1])
if num_frames - fire_place[-1] > START_END_THRESHOLD:
_end = (num_frames + fire_place[-1]) * 0.5
# _end = fire_place[-1]
timestamp_list[-1][1] = _end*TIME_RATE
timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE])
new_char_list.append("<sil>")
else:
timestamp_list[-1][1] = num_frames*TIME_RATE
assert len(new_char_list) == len(timestamp_list)
res_str = ""
for char, timestamp in zip(new_char_list, timestamp_list):
res_str += "{} {} {};".format(char, str(timestamp[0]+0.0005)[:5], str(timestamp[1]+0.0005)[:5])
res = []
for char, timestamp in zip(new_char_list, timestamp_list):
if char != '<sil>':
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
return res_str, res
class SpeechText2Timestamp:
def __init__(
@ -315,7 +262,7 @@ def inference_modelscope(
for batch_id in range(_bs):
key = keys[batch_id]
token = speechtext2timestamp.converter.ids2tokens(batch['text'][batch_id])
ts_str, ts_list = time_stamp_lfr6_advance(us_alphas[batch_id], us_cif_peak[batch_id], token)
ts_str, ts_list = ts_prediction_lfr6_standard(us_alphas[batch_id], us_cif_peak[batch_id], token, force_time_shift=-3.0)
logging.warning(ts_str)
item = {'key': key, 'value': ts_str, 'timestamp':ts_list}
tp_result_list.append(item)

View File

@ -5,55 +5,70 @@ import numpy as np
from typing import Any, List, Tuple, Union
def time_stamp_lfr6_pl(us_alphas, us_cif_peak, char_list, begin_time=0.0, end_time=None):
def ts_prediction_lfr6_standard(us_alphas,
us_cif_peak,
char_list,
vad_offset=0.0,
end_time=None,
force_time_shift=-1.5
):
if not len(char_list):
return []
START_END_THRESHOLD = 5
MAX_TOKEN_DURATION = 12
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
if len(us_alphas.shape) == 3:
if len(us_alphas.shape) == 2:
alphas, cif_peak = us_alphas[0], us_cif_peak[0] # support inference batch_size=1 only
else:
alphas, cif_peak = us_alphas, us_cif_peak
num_frames = cif_peak.shape[0]
if char_list[-1] == '</s>':
char_list = char_list[:-1]
# char_list = [i for i in text]
timestamp_list = []
new_char_list = []
# for bicif model trained with large data, cif2 actually fires when a character starts
# so treat the frames between two peaks as the duration of the former token
fire_place = torch.where(cif_peak>1.0-1e-4)[0].cpu().numpy() - 1.5
fire_place = torch.where(cif_peak>1.0-1e-4)[0].cpu().numpy() + force_time_shift # total offset
num_peak = len(fire_place)
assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
# begin silence
if fire_place[0] > START_END_THRESHOLD:
char_list.insert(0, '<sil>')
# char_list.insert(0, '<sil>')
timestamp_list.append([0.0, fire_place[0]*TIME_RATE])
new_char_list.append('<sil>')
# tokens timestamp
for i in range(len(fire_place)-1):
# the peak is always a little ahead of the start time
# timestamp_list.append([(fire_place[i]-1.2)*TIME_RATE, fire_place[i+1]*TIME_RATE])
timestamp_list.append([(fire_place[i])*TIME_RATE, fire_place[i+1]*TIME_RATE])
# cut the duration to token and sil of the 0-weight frames last long
new_char_list.append(char_list[i])
if MAX_TOKEN_DURATION < 0 or fire_place[i+1] - fire_place[i] <= MAX_TOKEN_DURATION:
timestamp_list.append([fire_place[i]*TIME_RATE, fire_place[i+1]*TIME_RATE])
else:
# cut the duration to token and sil of the 0-weight frames last long
_split = fire_place[i] + MAX_TOKEN_DURATION
timestamp_list.append([fire_place[i]*TIME_RATE, _split*TIME_RATE])
timestamp_list.append([_split*TIME_RATE, fire_place[i+1]*TIME_RATE])
new_char_list.append('<sil>')
# tail token and end silence
# new_char_list.append(char_list[-1])
if num_frames - fire_place[-1] > START_END_THRESHOLD:
_end = (num_frames + fire_place[-1]) / 2
_end = (num_frames + fire_place[-1]) * 0.5
# _end = fire_place[-1]
timestamp_list[-1][1] = _end*TIME_RATE
timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE])
char_list.append("<sil>")
new_char_list.append("<sil>")
else:
timestamp_list[-1][1] = num_frames*TIME_RATE
if begin_time: # add offset time in model with vad
if vad_offset: # add offset time in model with vad
for i in range(len(timestamp_list)):
timestamp_list[i][0] = timestamp_list[i][0] + begin_time / 1000.0
timestamp_list[i][1] = timestamp_list[i][1] + begin_time / 1000.0
timestamp_list[i][0] = timestamp_list[i][0] + vad_offset / 1000.0
timestamp_list[i][1] = timestamp_list[i][1] + vad_offset / 1000.0
res_txt = ""
for char, timestamp in zip(char_list, timestamp_list):
res_txt += "{} {} {};".format(char, timestamp[0], timestamp[1])
for char, timestamp in zip(new_char_list, timestamp_list):
res_txt += "{} {} {};".format(char, str(timestamp[0]+0.0005)[:5], str(timestamp[1]+0.0005)[:5])
res = []
for char, timestamp in zip(char_list, timestamp_list):
for char, timestamp in zip(new_char_list, timestamp_list):
if char != '<sil>':
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
return res
return res_txt, res
def time_stamp_sentence(punc_id_list, time_stamp_postprocessed, text_postprocessed):