FunASR/docs/modelscope_pipeline/itn_pipeline.md
2023-05-05 16:43:06 +08:00

63 lines
3.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Inverse Text Normalization (ITN)
> **Note**:
> The modelscope pipeline supports all the models in [model zoo](https://modelscope.cn/models?page=1&tasks=inverse-text-processing&type=audio) to inference. Here we take the model of the Japanese ITN model as example to demonstrate the usage.
## Inference
### Quick start
#### [Japanese ITN model](https://modelscope.cn/models/damo/speech_inverse_text_processing_fun-text-processing-itn-ja/summary)
```python
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
itn_inference_pipline = pipeline(
task=Tasks.inverse_text_processing,
model='damo/speech_inverse_text_processing_fun-text-processing-itn-ja',
model_revision=None)
itn_result = itn_inference_pipline(text_in='百二十三')
print(itn_result)
# 123
```
- read text data directly.
```python
rec_result = inference_pipeline(text_in='一九九九年に誕生した同商品にちなみ、約三十年前、二十四歳の頃の幸四郎の写真を公開。')
# 1999年に誕生した同商品にちなみ、約30年前、24歳の頃の幸四郎の写真を公開。
```
- text stored via urlexamplehttps://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/ja_itn_example.txt
```python
rec_result = inference_pipeline(text_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/ja_itn_example.txt')
```
Full code of demo, please ref to [demo](https://github.com/alibaba-damo-academy/FunASR/tree/main/fun_text_processing/inverse_text_normalization)
### API-reference
#### Define pipeline
- `task`: `Tasks.inverse_text_processing`
- `model`: model name in [model zoo](https://modelscope.cn/models?page=1&tasks=inverse-text-processing&type=audio), or model path in local disk
- `output_dir`: `None` (Default), the output path of results if set
- `model_revision`: `None` (Default), setting the model version
#### Infer pipeline
- `text_in`: the input to decode, which could be:
- text bytes, `e.g.`: "一九九九年に誕生した同商品にちなみ、約三十年前、二十四歳の頃の幸四郎の写真を公開。"
- text file, `e.g.`: https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_text/ja_itn_example.txt
In this case of `text file` input, `output_dir` must be set to save the output results
## Modify Your Own ITN Model
The rule-based ITN code is open-sourced in [FunTextProcessing](https://github.com/alibaba-damo-academy/FunASR/tree/main/fun_text_processing), users can modify by their own grammar rules for different languages. Let's take Japanese as an example, users can add their own whitelist in ```FunASR/fun_text_processing/inverse_text_normalization/ja/data/whitelist.tsv```. After modified the grammar rules, the users can export and evaluate their own ITN models in local directory.
### Export ITN Model
Export ITN model via ```FunASR/fun_text_processing/inverse_text_normalization/export_models.py```. An example to export ITN model to local folder is shown as below.
```shell
cd FunASR/fun_text_processing/inverse_text_normalization/
python export_models.py --language ja --export_dir ./itn_models/
```
### Evaluate ITN Model
Users can evaluate their own ITN model in local directory via ```FunASR/fun_text_processing/inverse_text_normalization/inverse_normalize.py```. Here is an example:
```shell
cd FunASR/fun_text_processing/inverse_text_normalization/
python inverse_normalize.py --input_file ja_itn_example.txt --cache_dir ./itn_models/ --output_file output.txt --language=ja
```