FunASR/examples/industrial_data_pretraining/lcbnet/demo_nj.sh
2024-02-28 17:30:41 +08:00

71 lines
2.4 KiB
Bash
Executable File

file_dir="/nfs/yufan.yf/workspace/github/FunASR/examples/industrial_data_pretraining/lcbnet/exp/speech_lcbnet_contextual_asr-en-16k-bpe-vocab5002-pytorch"
CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
inference_device="cuda"
if [ ${inference_device} == "cuda" ]; then
nj=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
else
inference_batch_size=1
CUDA_VISIBLE_DEVICES=""
for JOB in $(seq ${nj}); do
CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"-1,"
done
fi
inference_dir="outputs/test"
_logdir="${inference_dir}/logdir"
echo "inference_dir: ${inference_dir}"
mkdir -p "${_logdir}"
key_file1=${file_dir}/wav.scp
key_file2=${file_dir}/ocr.txt
split_scps1=
split_scps2=
for JOB in $(seq "${nj}"); do
split_scps1+=" ${_logdir}/wav.${JOB}.scp"
split_scps2+=" ${_logdir}/ocr.${JOB}.txt"
done
utils/split_scp.pl "${key_file1}" ${split_scps1}
utils/split_scp.pl "${key_file2}" ${split_scps2}
gpuid_list_array=(${CUDA_VISIBLE_DEVICES//,/ })
for JOB in $(seq ${nj}); do
{
id=$((JOB-1))
gpuid=${gpuid_list_array[$id]}
export CUDA_VISIBLE_DEVICES=${gpuid}
python -m funasr.bin.inference \
--config-path=${file_dir} \
--config-name="config.yaml" \
++init_param=${file_dir}/model.pb \
++tokenizer_conf.token_list=${file_dir}/tokens.txt \
++input=[${_logdir}/wav.${JOB}.scp,${_logdir}/ocr.${JOB}.txt] \
+data_type='["kaldi_ark", "text"]' \
++tokenizer_conf.bpemodel=${file_dir}/bpe.model \
++output_dir="${inference_dir}/${JOB}" \
++device="${inference_device}" \
++ncpu=1 \
++disable_log=true &> ${_logdir}/log.${JOB}.txt
}&
done
wait
mkdir -p ${inference_dir}/1best_recog
for f in token score text; do
if [ -f "${inference_dir}/${JOB}/1best_recog/${f}" ]; then
for JOB in $(seq "${nj}"); do
cat "${inference_dir}/${JOB}/1best_recog/${f}"
done | sort -k1 >"${inference_dir}/1best_recog/${f}"
fi
done
echo "Computing WER ..."
echo "Computing WER ..."
python utils/postprocess_text_zh.py ${inference_dir}/1best_recog/text ${inference_dir}/1best_recog/text.proc
python utils/postprocess_text_zh.py ${data_dir}/text ${inference_dir}/1best_recog/text.ref
python utils/compute_wer.py ${inference_dir}/1best_recog/text.ref ${inference_dir}/1best_recog/text.proc ${inference_dir}/1best_recog/text.cer
tail -n 3 ${inference_dir}/1best_recog/text.cer