file_dir="/nfs/yufan.yf/workspace/github/FunASR/examples/industrial_data_pretraining/lcbnet/exp/speech_lcbnet_contextual_asr-en-16k-bpe-vocab5002-pytorch" CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" inference_device="cuda" if [ ${inference_device} == "cuda" ]; then nj=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') else inference_batch_size=1 CUDA_VISIBLE_DEVICES="" for JOB in $(seq ${nj}); do CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"-1," done fi inference_dir="outputs/test" _logdir="${inference_dir}/logdir" echo "inference_dir: ${inference_dir}" mkdir -p "${_logdir}" key_file1=${file_dir}/wav.scp key_file2=${file_dir}/ocr.txt split_scps1= split_scps2= for JOB in $(seq "${nj}"); do split_scps1+=" ${_logdir}/wav.${JOB}.scp" split_scps2+=" ${_logdir}/ocr.${JOB}.txt" done utils/split_scp.pl "${key_file1}" ${split_scps1} utils/split_scp.pl "${key_file2}" ${split_scps2} gpuid_list_array=(${CUDA_VISIBLE_DEVICES//,/ }) for JOB in $(seq ${nj}); do { id=$((JOB-1)) gpuid=${gpuid_list_array[$id]} export CUDA_VISIBLE_DEVICES=${gpuid} python -m funasr.bin.inference \ --config-path=${file_dir} \ --config-name="config.yaml" \ ++init_param=${file_dir}/model.pb \ ++tokenizer_conf.token_list=${file_dir}/tokens.txt \ ++input=[${_logdir}/wav.${JOB}.scp,${_logdir}/ocr.${JOB}.txt] \ +data_type='["kaldi_ark", "text"]' \ ++tokenizer_conf.bpemodel=${file_dir}/bpe.model \ ++output_dir="${inference_dir}/${JOB}" \ ++device="${inference_device}" \ ++ncpu=1 \ ++disable_log=true &> ${_logdir}/log.${JOB}.txt }& done wait mkdir -p ${inference_dir}/1best_recog for f in token score text; do if [ -f "${inference_dir}/${JOB}/1best_recog/${f}" ]; then for JOB in $(seq "${nj}"); do cat "${inference_dir}/${JOB}/1best_recog/${f}" done | sort -k1 >"${inference_dir}/1best_recog/${f}" fi done echo "Computing WER ..." echo "Computing WER ..." python utils/postprocess_text_zh.py ${inference_dir}/1best_recog/text ${inference_dir}/1best_recog/text.proc python utils/postprocess_text_zh.py ${data_dir}/text ${inference_dir}/1best_recog/text.ref python utils/compute_wer.py ${inference_dir}/1best_recog/text.ref ${inference_dir}/1best_recog/text.proc ${inference_dir}/1best_recog/text.cer tail -n 3 ${inference_dir}/1best_recog/text.cer