FunASR/funasr/build_utils/build_punc_model.py
2023-04-24 16:13:00 +08:00

69 lines
2.2 KiB
Python

import logging
from funasr.models.target_delay_transformer import TargetDelayTransformer
from funasr.models.vad_realtime_transformer import VadRealtimeTransformer
from funasr.torch_utils.initialize import initialize
from funasr.train.abs_model import PunctuationModel
from funasr.train.class_choices import ClassChoices
punc_choices = ClassChoices(
"punctuation",
classes=dict(
target_delay=TargetDelayTransformer,
vad_realtime=VadRealtimeTransformer
),
default="target_delay",
)
model_choices = ClassChoices(
"model",
classes=dict(
punc=PunctuationModel,
),
default="punc",
)
class_choices_list = [
# --punc and --punc_conf
punc_choices,
# --model and --model_conf
model_choices
]
def build_punc_model(args):
# token_list and punc list
if isinstance(args.token_list, str):
with open(args.token_list, encoding="utf-8") as f:
token_list = [line.rstrip() for line in f]
args.token_list = token_list.copy()
if isinstance(args.punc_list, str):
with open(args.punc_list, encoding="utf-8") as f2:
pairs = [line.rstrip().split(":") for line in f2]
punc_list = [pair[0] for pair in pairs]
punc_weight_list = [float(pair[1]) for pair in pairs]
args.punc_list = punc_list.copy()
elif isinstance(args.punc_list, list):
punc_list = args.punc_list.copy()
punc_weight_list = [1] * len(punc_list)
if isinstance(args.token_list, (tuple, list)):
token_list = args.token_list.copy()
else:
raise RuntimeError("token_list must be str or dict")
vocab_size = len(token_list)
punc_size = len(punc_list)
logging.info(f"Vocabulary size: {vocab_size}")
# punc
punc_class = punc_choices.get_class(args.punctuation)
punc = punc_class(vocab_size=vocab_size, punc_size=punc_size, **args.punctuation_conf)
if "punc_weight" in args.model_conf:
args.model_conf.pop("punc_weight")
model = PunctuationModel(punc_model=punc, vocab_size=vocab_size, punc_weight=punc_weight_list, **args.model_conf)
# initialize
if args.init is not None:
initialize(model, args.init)
return model