import logging from funasr.models.target_delay_transformer import TargetDelayTransformer from funasr.models.vad_realtime_transformer import VadRealtimeTransformer from funasr.torch_utils.initialize import initialize from funasr.train.abs_model import PunctuationModel from funasr.train.class_choices import ClassChoices punc_choices = ClassChoices( "punctuation", classes=dict( target_delay=TargetDelayTransformer, vad_realtime=VadRealtimeTransformer ), default="target_delay", ) model_choices = ClassChoices( "model", classes=dict( punc=PunctuationModel, ), default="punc", ) class_choices_list = [ # --punc and --punc_conf punc_choices, # --model and --model_conf model_choices ] def build_punc_model(args): # token_list and punc list if isinstance(args.token_list, str): with open(args.token_list, encoding="utf-8") as f: token_list = [line.rstrip() for line in f] args.token_list = token_list.copy() if isinstance(args.punc_list, str): with open(args.punc_list, encoding="utf-8") as f2: pairs = [line.rstrip().split(":") for line in f2] punc_list = [pair[0] for pair in pairs] punc_weight_list = [float(pair[1]) for pair in pairs] args.punc_list = punc_list.copy() elif isinstance(args.punc_list, list): punc_list = args.punc_list.copy() punc_weight_list = [1] * len(punc_list) if isinstance(args.token_list, (tuple, list)): token_list = args.token_list.copy() else: raise RuntimeError("token_list must be str or dict") vocab_size = len(token_list) punc_size = len(punc_list) logging.info(f"Vocabulary size: {vocab_size}") # punc punc_class = punc_choices.get_class(args.punctuation) punc = punc_class(vocab_size=vocab_size, punc_size=punc_size, **args.punctuation_conf) if "punc_weight" in args.model_conf: args.model_conf.pop("punc_weight") model = PunctuationModel(punc_model=punc, vocab_size=vocab_size, punc_weight=punc_weight_list, **args.model_conf) # initialize if args.init is not None: initialize(model, args.init) return model