FunASR/funasr/train_utils/trainer_ds.py
zhifu gao 32e7836645
update with main (#1786)
* add cmakelist

* add paraformer-torch

* add debug for funasr-onnx-offline

* fix redefinition of jieba StdExtension.hpp

* add loading torch models

* update funasr-onnx-offline

* add SwitchArg for wss-server

* add SwitchArg for funasr-onnx-offline

* update cmakelist

* update funasr-onnx-offline-rtf

* add define condition

* add gpu define for offlne-stream

* update com define

* update offline-stream

* update cmakelist

* update func CompileHotwordEmbedding

* add timestamp for paraformer-torch

* add C10_USE_GLOG for paraformer-torch

* update paraformer-torch

* fix func FunASRWfstDecoderInit

* update model.h

* fix func FunASRWfstDecoderInit

* fix tpass_stream

* update paraformer-torch

* add bladedisc for funasr-onnx-offline

* update comdefine

* update funasr-wss-server

* add log for torch

* fix GetValue BLADEDISC

* fix log

* update cmakelist

* update warmup to 10

* update funasrruntime

* add batch_size for wss-server

* add batch for bins

* add batch for offline-stream

* add batch for paraformer

* add batch for offline-stream

* fix func SetBatchSize

* add SetBatchSize for model

* add SetBatchSize for model

* fix func Forward

* fix padding

* update funasrruntime

* add dec reset for batch

* set batch default value

* add argv for CutSplit

* sort frame_queue

* sorted msgs

* fix FunOfflineInfer

* add dynamic batch for fetch

* fix FetchDynamic

* update run_server.sh

* update run_server.sh

* cpp http post server support (#1739)

* add cpp http server

* add some comment

* remove some comments

* del debug infos

* restore run_server.sh

* adapt to new model struct

* 修复了onnxruntime在macos下编译失败的错误 (#1748)

* Add files via upload

增加macos的编译支持

* Add files via upload

增加macos支持

* Add files via upload

target_link_directories(funasr PUBLIC ${ONNXRUNTIME_DIR}/lib)
target_link_directories(funasr PUBLIC ${FFMPEG_DIR}/lib)
添加 if(APPLE) 限制

---------

Co-authored-by: Yabin Li <wucong.lyb@alibaba-inc.com>

* Delete docs/images/wechat.png

* Add files via upload

* fixed the issues about seaco-onnx timestamp

* fix bug (#1764)

当语音识别结果包含 `http` 时,标点符号预测会把它会被当成 url

* fix empty asr result (#1765)

解码结果为空的语音片段,text 用空字符串

* docs

* docs

* docs

* docs

* docs

* keep empty speech result (#1772)

* docs

* docs

* update wechat QRcode

* Add python funasr api support for websocket srv (#1777)

* add python funasr_api supoort

* change little to README.md

* add core tools stream

* modified a little

* fix bug for timeout

* support for buffer decode

* add ffmpeg decode for buffer

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* auto frontend

* Dev gzf exp (#1785)

* resume from step

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* batch

* train_loss_avg train_acc_avg

* train_loss_avg train_acc_avg

* train_loss_avg train_acc_avg

* log step

* wav is not exist

* wav is not exist

* decoding

* decoding

* decoding

* wechat

* decoding key

* decoding key

* decoding key

* decoding key

* decoding key

* decoding key

* dynamic batch

* start_data_split_i=0

* total_time/accum_grad

* total_time/accum_grad

* total_time/accum_grad

* update avg slice

* update avg slice

* sensevoice sanm

* sensevoice sanm

* sensevoice sanm

---------

Co-authored-by: 北念 <lzr265946@alibaba-inc.com>

* auto frontend

---------

Co-authored-by: 雾聪 <wucong.lyb@alibaba-inc.com>
Co-authored-by: zhaomingwork <61895407+zhaomingwork@users.noreply.github.com>
Co-authored-by: szsteven008 <97944818+szsteven008@users.noreply.github.com>
Co-authored-by: Ephemeroptera <605686962@qq.com>
Co-authored-by: 彭震东 <zhendong.peng@qq.com>
Co-authored-by: Shi Xian <40013335+R1ckShi@users.noreply.github.com>
Co-authored-by: 维石 <shixian.shi@alibaba-inc.com>
Co-authored-by: 北念 <lzr265946@alibaba-inc.com>
2024-06-06 09:54:35 +08:00

949 lines
40 KiB
Python

import math
import os
import time
import torch
import logging
from tqdm import tqdm
from datetime import datetime
import torch.distributed as dist
from torch.cuda.amp import autocast, GradScaler
from contextlib import nullcontext, contextmanager
from pathlib import Path
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from funasr.train_utils.device_funcs import to_device
from funasr.train_utils.recursive_op import recursive_average
from funasr.train_utils.average_nbest_models import average_checkpoints
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
import funasr.utils.misc as misc_utils
try:
import wandb
except:
wandb = None
@contextmanager
def maybe_autocast(dtype=None, use_deepspeed=False):
if use_deepspeed:
with torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False):
yield
else:
if dtype == torch.float16:
with autocast(enabled=True):
yield
else:
yield
class Trainer:
"""
A simple trainer class for training a PyTorch model, saving checkpoints at the end of each epoch,
and optionally resuming from a saved checkpoint.
Attributes:
max_epoch (int): Maximum number of epochs for training.
model (torch.nn.Module): The model to be trained.
optim (torch.optim.Optimizer): The optimizer to use for training.
scheduler (torch.optim.lr_scheduler._LRScheduler): The learning rate scheduler.
dataloader_train (torch.utils.data.DataLoader): DataLoader for the training dataset.
dataloader_val (torch.utils.data.DataLoader): DataLoader for the validation dataset.
output_dir (str): Directory where model checkpoints will be saved.
resume (str, optional): Path to a checkpoint to resume training from.
"""
def __init__(
self,
rank=0,
local_rank=0,
world_size=1,
use_ddp: bool = False,
use_fsdp: bool = False,
use_fp16: bool = False,
use_deepspeed: bool = False,
output_dir: str = "./",
**kwargs,
):
"""
Initializes the Trainer class with the model, optimizer, scheduler, dataloaders, and other settings.
Args:
model (torch.nn.Module): The model to be trained.
optim (torch.optim.Optimizer): The optimizer to use for training.
scheduler (torch.optim.lr_scheduler._LRScheduler): The learning rate scheduler.
dataloader_train (torch.utils.data.DataLoader): The DataLoader for the training dataset.
dataloader_val (torch.utils.data.DataLoader): The DataLoader for the validation dataset.
**kwargs: Additional keyword arguments:
max_epoch (int): The maximum number of epochs for training.
output_dir (str): The directory where model checkpoints will be saved. Default is './'.
resume (str, optional): The file path to a checkpoint to resume training from.
"""
self.rank = kwargs.get("rank", 0)
self.local_rank = local_rank
self.world_size = world_size
self.use_ddp = use_ddp
self.use_fsdp = use_fsdp
self.device = kwargs.get("device", "cuda")
self.output_dir = output_dir
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir, exist_ok=True)
self.resume = kwargs.get("resume", True)
self.start_epoch = 0
self.max_epoch = kwargs.get("max_epoch", 100)
# self.kwargs = kwargs
self.log_interval = kwargs.get("log_interval", 50)
self.batch_total = 0
self.dtype = torch.float32
self.use_fp16 = use_fp16
if self.use_fp16:
self.dtype = torch.float16
self.save_checkpoint_interval = kwargs.get("save_checkpoint_interval", 5000)
self.validate_interval = kwargs.get("validate_interval", 5000)
self.keep_nbest_models = kwargs.get("keep_nbest_models", 500)
self.avg_keep_nbest_models_type = kwargs.get("avg_keep_nbest_models_type", "acc")
self.avg_nbest_model = kwargs.get("avg_nbest_model", 10)
self.accum_grad = kwargs.get("accum_grad", 1)
self.grad_clip = kwargs.get("grad_clip", 10.0)
self.grad_clip_type = kwargs.get("grad_clip_type", 2.0)
self.train_acc_avg = 0.0
self.train_loss_avg = 0.0
self.val_acc_avg = 0.0
self.val_loss_avg = 0.0
self.best_acc_idx = 0
self.saved_ckpts = {}
self.step_or_epoch = -1
self.best_step_or_epoch = ""
self.val_acc_step_or_eoch = {}
self.val_loss_step_or_eoch = {}
self.reset_gpu_cache = kwargs.get("reset_gpu_cache", False)
self.start_data_split_i = 0
self.start_step = 0
self.step_in_epoch = 0
self.use_wandb = kwargs.get("use_wandb", False)
if self.use_wandb:
wandb.login(key=kwargs.get("wandb_token"))
wandb.init(
config=kwargs,
project=kwargs.get("wandb_project", "my_project"),
entity=kwargs.get("wandb_team", "my_team"),
name=kwargs.get("wandb_exp_name", "my_exp"),
dir=output_dir,
job_type="training",
reinit=True,
)
tensorboard_dir = os.path.join(output_dir, "tensorboard")
os.makedirs(tensorboard_dir, exist_ok=True)
try:
from tensorboardX import SummaryWriter
self.writer = SummaryWriter(tensorboard_dir) # if trainer.rank == 0 else None
except:
self.writer = None
self.use_deepspeed = use_deepspeed
self.deepspeed_config = kwargs.get("deepspeed_config", "")
def save_checkpoint(
self,
epoch,
step=None,
model=None,
optim=None,
scheduler=None,
scaler=None,
step_in_epoch=None,
**kwargs,
):
"""
Saves a checkpoint containing the model's state, the optimizer's state,
and the scheduler's state at the end of the given epoch. This method is
intended to be called at the end of each epoch to save the training progress.
Args:
epoch (int): The epoch number at which the checkpoint is being saved.
"""
step_in_epoch = None if step is None else step_in_epoch
if self.use_deepspeed:
logging.info(f"Save checkpoint: {epoch}, rank: {self.local_rank}\n")
# self.step_or_epoch += 1
state = {
"epoch": epoch,
# "state_dict": model.state_dict(),
# "optimizer": optim.state_dict(),
# "scheduler": scheduler.state_dict(),
"saved_ckpts": self.saved_ckpts,
"val_acc_step_or_eoch": self.val_acc_step_or_eoch,
"val_loss_step_or_eoch": self.val_loss_step_or_eoch,
"best_step_or_epoch": self.best_step_or_epoch,
"avg_keep_nbest_models_type": self.avg_keep_nbest_models_type,
"step": step,
"step_in_epoch": step_in_epoch,
"data_split_i": kwargs.get("data_split_i", 0),
"data_split_num": kwargs.get("data_split_num", 1),
"batch_total": self.batch_total,
"train_loss_avg": kwargs.get("train_loss_avg", 0),
"train_acc_avg": kwargs.get("train_acc_avg", 0),
}
step = step_in_epoch
if hasattr(model, "module"):
state["state_dict"] = model.module.state_dict()
if scaler:
state["scaler_state"] = scaler.state_dict()
# Create output directory if it does not exist
os.makedirs(self.output_dir, exist_ok=True)
if step is None:
ckpt_name = f"model.pt.ep{epoch}"
else:
ckpt_name = f"model.pt.ep{epoch}.{step}"
filename = os.path.join(self.output_dir, ckpt_name)
# torch.save(state, filename)
with torch.no_grad():
model.save_checkpoint(save_dir=self.output_dir, tag=ckpt_name, client_state=state)
logging.info(f"\nCheckpoint saved to {filename}\n")
latest = Path(os.path.join(self.output_dir, f"model.pt"))
# torch.save(state, latest)
with torch.no_grad():
model.save_checkpoint(save_dir=self.output_dir, tag=f"model.pt", client_state=state)
if self.best_step_or_epoch == "":
self.best_step_or_epoch = ckpt_name
if self.avg_keep_nbest_models_type == "acc":
if (
self.val_acc_step_or_eoch[ckpt_name]
>= self.val_acc_step_or_eoch[self.best_step_or_epoch]
):
self.best_step_or_epoch = ckpt_name
best_ckpt = Path(os.path.join(self.output_dir, f"model.pt.best"))
# torch.save(state, best_ckpt)
with torch.no_grad():
model.save_checkpoint(
save_dir=self.output_dir, tag=f"model.pt.best", client_state=state
)
logging.info(
f"Update best acc: {self.val_acc_step_or_eoch[self.best_step_or_epoch]:.4f}, {best_ckpt}"
)
else:
logging.info(
f"No improvement in acc: {self.val_acc_step_or_eoch[ckpt_name]:.4f} < {self.val_acc_step_or_eoch[self.best_step_or_epoch]:.4f}, {os.path.join(self.output_dir, self.best_step_or_epoch)}"
)
elif self.avg_keep_nbest_models_type == "loss":
if (
self.val_loss_step_or_eoch[ckpt_name]
<= self.val_loss_step_or_eoch[self.best_step_or_epoch]
):
self.best_step_or_epoch = ckpt_name
best_ckpt = Path(os.path.join(self.output_dir, f"model.pt.best"))
# torch.save(state, best_ckpt)
with torch.no_grad():
model.save_checkpoint(
save_dir=self.output_dir, tag=f"model.pt.best", client_state=state
)
logging.info(
f"Update best loss: {self.val_loss_step_or_eoch[self.best_step_or_epoch]:.4f}, {best_ckpt}"
)
else:
logging.info(
f"No improvement in loss: {self.val_loss_step_or_eoch[ckpt_name]:.4f} > {self.val_loss_step_or_eoch[self.best_step_or_epoch]:.4f}, {os.path.join(self.output_dir, self.best_step_or_epoch)}"
)
else:
print("Undo")
self.saved_ckpts[ckpt_name] = getattr(
self, f"val_{self.avg_keep_nbest_models_type}_step_or_eoch"
)[ckpt_name]
if self.keep_nbest_models > 0:
if len(self.saved_ckpts) > self.keep_nbest_models:
if self.avg_keep_nbest_models_type == "acc":
key = min(self.saved_ckpts, key=self.saved_ckpts.get)
else:
key = max(self.saved_ckpts, key=self.saved_ckpts.get)
if key in self.saved_ckpts:
del self.saved_ckpts[key]
filename = os.path.join(self.output_dir, key)
logging.info(f"Delete: {filename}")
if os.path.exists(filename):
# os.remove(filename)
misc_utils.smart_remove(filename)
elif self.use_fsdp:
pass
elif self.rank == 0:
logging.info(f"Save checkpoint: {epoch}, rank: {self.local_rank}\n")
# self.step_or_epoch += 1
state = {
"epoch": epoch,
"state_dict": model.state_dict(),
"optimizer": optim.state_dict(),
"scheduler": scheduler.state_dict(),
"saved_ckpts": self.saved_ckpts,
"val_acc_step_or_eoch": self.val_acc_step_or_eoch,
"val_loss_step_or_eoch": self.val_loss_step_or_eoch,
"best_step_or_epoch": self.best_step_or_epoch,
"avg_keep_nbest_models_type": self.avg_keep_nbest_models_type,
"step": step,
"step_in_epoch": step_in_epoch,
"data_split_i": kwargs.get("data_split_i", 0),
"data_split_num": kwargs.get("data_split_num", 1),
"batch_total": self.batch_total,
"train_loss_avg": kwargs.get("train_loss_avg", 0),
"train_acc_avg": kwargs.get("train_acc_avg", 0),
}
step = step_in_epoch
if hasattr(model, "module"):
state["state_dict"] = model.module.state_dict()
if scaler:
state["scaler_state"] = scaler.state_dict()
# Create output directory if it does not exist
os.makedirs(self.output_dir, exist_ok=True)
if step is None:
ckpt_name = f"model.pt.ep{epoch}"
else:
ckpt_name = f"model.pt.ep{epoch}.{step}"
filename = os.path.join(self.output_dir, ckpt_name)
torch.save(state, filename)
logging.info(f"\nCheckpoint saved to {filename}\n")
latest = Path(os.path.join(self.output_dir, f"model.pt"))
torch.save(state, latest)
if self.best_step_or_epoch == "":
self.best_step_or_epoch = ckpt_name
if self.avg_keep_nbest_models_type == "acc":
if (
self.val_acc_step_or_eoch[ckpt_name]
>= self.val_acc_step_or_eoch[self.best_step_or_epoch]
):
self.best_step_or_epoch = ckpt_name
best_ckpt = Path(os.path.join(self.output_dir, f"model.pt.best"))
torch.save(state, best_ckpt)
logging.info(
f"Update best acc: {self.val_acc_step_or_eoch[self.best_step_or_epoch]:.4f}, {best_ckpt}"
)
else:
logging.info(
f"No improvement in acc: {self.val_acc_step_or_eoch[ckpt_name]:.4f} < {self.val_acc_step_or_eoch[self.best_step_or_epoch]:.4f}, {os.path.join(self.output_dir, self.best_step_or_epoch)}"
)
elif self.avg_keep_nbest_models_type == "loss":
if (
self.val_loss_step_or_eoch[ckpt_name]
<= self.val_loss_step_or_eoch[self.best_step_or_epoch]
):
self.best_step_or_epoch = ckpt_name
best_ckpt = Path(os.path.join(self.output_dir, f"model.pt.best"))
torch.save(state, best_ckpt)
logging.info(
f"Update best loss: {self.val_loss_step_or_eoch[self.best_step_or_epoch]:.4f}, {best_ckpt}"
)
else:
logging.info(
f"No improvement in loss: {self.val_loss_step_or_eoch[ckpt_name]:.4f} > {self.val_loss_step_or_eoch[self.best_step_or_epoch]:.4f}, {os.path.join(self.output_dir, self.best_step_or_epoch)}"
)
else:
print("Undo")
self.saved_ckpts[ckpt_name] = getattr(
self, f"val_{self.avg_keep_nbest_models_type}_step_or_eoch"
)[ckpt_name]
if self.keep_nbest_models > 0:
if len(self.saved_ckpts) > self.keep_nbest_models:
if self.avg_keep_nbest_models_type == "acc":
key = min(self.saved_ckpts, key=self.saved_ckpts.get)
else:
key = max(self.saved_ckpts, key=self.saved_ckpts.get)
if key in self.saved_ckpts:
del self.saved_ckpts[key]
filename = os.path.join(self.output_dir, key)
logging.info(f"Delete: {filename}")
if os.path.exists(filename):
# os.remove(filename)
misc_utils.smart_remove(filename)
if self.use_ddp or self.use_fsdp:
dist.barrier()
def resume_checkpoint(
self,
model=None,
optim=None,
scheduler=None,
scaler=None,
):
"""
Resumes training from a checkpoint at the given file path.
Loads the model's state, the optimizer's state, and the scheduler's state.
Args:
resume_path (str): The file path to the checkpoint to resume from.
"""
if self.resume:
if self.use_deepspeed:
ckpt = os.path.join(self.output_dir, "model.pt")
if os.path.exists(ckpt):
_, checkpoint = model.load_checkpoint(self.output_dir, "model.pt")
self.start_epoch = checkpoint["epoch"]
self.saved_ckpts = checkpoint["saved_ckpts"]
self.val_acc_step_or_eoch = (
checkpoint["val_acc_step_or_eoch"]
if "val_acc_step_or_eoch" in checkpoint
else {}
)
self.val_loss_step_or_eoch = (
checkpoint["val_loss_step_or_eoch"]
if "val_loss_step_or_eoch" in checkpoint
else {}
)
self.best_step_or_epoch = (
checkpoint["best_step_or_epoch"]
if "best_step_or_epoch" in checkpoint
else ""
)
self.start_data_split_i = (
checkpoint["data_split_i"] if "data_split_i" in checkpoint else 0
)
self.batch_total = (
checkpoint["batch_total"] if "batch_total" in checkpoint else 0
)
self.start_step = checkpoint["step"] if "step" in checkpoint else 0
self.start_step = 0 if self.start_step is None else self.start_step
self.step_in_epoch = (
checkpoint["step_in_epoch"] if "step_in_epoch" in checkpoint else 0
)
self.step_in_epoch = 0 if self.step_in_epoch is None else self.step_in_epoch
print(checkpoint["train_acc_avg"])
self.train_acc_avg = (
checkpoint["train_acc_avg"] if "train_acc_avg" in checkpoint else 0
)
self.train_loss_avg = (
checkpoint["train_loss_avg"] if "train_loss_avg" in checkpoint else 0
)
model.to(self.device)
print(f"Checkpoint loaded successfully from '{ckpt}'")
else:
print(f"No checkpoint found at '{ckpt}', does not resume status!")
else:
ckpt = os.path.join(self.output_dir, "model.pt")
if os.path.isfile(ckpt):
checkpoint = torch.load(ckpt, map_location="cpu")
self.start_epoch = checkpoint["epoch"]
# self.model.load_state_dict(checkpoint['state_dict'])
src_state = checkpoint["state_dict"]
dst_state = model.state_dict()
for k in dst_state.keys():
if not k.startswith("module.") and "module." + k in src_state.keys():
k_ddp = "module." + k
elif k.startswith("module.") and "module." + k not in src_state.keys():
k_ddp = k.replace("module.", "", 1)
else:
k_ddp = k
if k_ddp in src_state.keys():
dst_state[k] = src_state[k_ddp]
else:
print(f"Miss key in ckpt: model: {k}, ckpt: {k_ddp}")
model.load_state_dict(dst_state)
optim.load_state_dict(checkpoint["optimizer"])
scheduler.load_state_dict(checkpoint["scheduler"])
if scaler is not None and "scaler_state" in checkpoint:
scaler.load_state_dict(checkpoint["scaler_state"])
self.saved_ckpts = checkpoint["saved_ckpts"]
self.val_acc_step_or_eoch = (
checkpoint["val_acc_step_or_eoch"]
if "val_acc_step_or_eoch" in checkpoint
else {}
)
self.val_loss_step_or_eoch = (
checkpoint["val_loss_step_or_eoch"]
if "val_loss_step_or_eoch" in checkpoint
else {}
)
self.best_step_or_epoch = (
checkpoint["best_step_or_epoch"]
if "best_step_or_epoch" in checkpoint
else ""
)
self.start_data_split_i = (
checkpoint["data_split_i"] if "data_split_i" in checkpoint else 0
)
self.batch_total = (
checkpoint["batch_total"] if "batch_total" in checkpoint else 0
)
self.start_step = checkpoint["step"] if "step" in checkpoint else 0
self.start_step = 0 if self.start_step is None else self.start_step
self.step_in_epoch = (
checkpoint["step_in_epoch"] if "step_in_epoch" in checkpoint else 0
)
self.step_in_epoch = 0 if self.step_in_epoch is None else self.step_in_epoch
print(checkpoint["train_acc_avg"])
self.train_acc_avg = (
checkpoint["train_acc_avg"] if "train_acc_avg" in checkpoint else 0
)
self.train_loss_avg = (
checkpoint["train_loss_avg"] if "train_loss_avg" in checkpoint else 0
)
model.to(self.device)
print(f"Checkpoint loaded successfully from '{ckpt}'")
else:
print(f"No checkpoint found at '{ckpt}', does not resume status!")
if self.use_ddp or self.use_fsdp:
dist.barrier()
def train_epoch(
self,
model=None,
optim=None,
scheduler=None,
scaler=None,
dataloader_train=None,
dataloader_val=None,
epoch=None,
**kwargs,
):
"""
Defines the training process for a single epoch with gradient accumulation.
Args:
epoch (int): The current epoch number.
"""
if self.use_ddp or self.use_fsdp or self.use_deepspeed:
dist.barrier()
logging.info(f"Train epoch: {epoch}, rank: {self.rank}\n")
model.train()
# Set the number of steps for gradient accumulation
accum_grad = self.accum_grad
# Initialize the gradient accumulation
optim.zero_grad()
speed_stats = {}
iterator_stop = torch.tensor(0).to(self.device)
dataloader_train.batch_sampler.set_epoch(epoch)
time_beg = time.perf_counter()
time5 = time_beg
for batch_idx, batch in enumerate(dataloader_train):
self.batch_total += 1
self.step_in_epoch += 1
loss_dict = {
"speed_stats": {},
"epoch": epoch,
"batch_idx": batch_idx,
"data_split_i": kwargs.get("data_split_i", 0),
"data_split_num": kwargs.get("data_split_num", 1),
"log_step": batch_idx + kwargs.get("start_step", 0),
"batch_total": self.batch_total,
"step_in_epoch": self.step_in_epoch,
}
time1 = time.perf_counter()
loss_dict["speed_stats"]["data_load"] = f"{time1-time_beg:0.3f}"
batch = to_device(batch, self.device)
my_context = nullcontext
if self.use_ddp or self.use_fsdp:
my_context = model.no_sync if batch_idx % accum_grad != 0 else my_context
with my_context():
time2 = time.perf_counter()
self.forward_step(model, batch, loss_dict=loss_dict)
time3 = time.perf_counter()
loss_dict["speed_stats"]["forward_time"] = f"{time3 - time2:0.3f}"
self.backward_step(model, scaler, loss_dict=loss_dict)
time4 = time.perf_counter()
loss_dict["speed_stats"]["backward_time"] = f"{time4 - time3:0.3f}"
self.update_step(model, optim, scheduler, scaler, loss_dict=loss_dict)
total_time = f"{(time.perf_counter() - time5):0.3f}"
time5 = time.perf_counter()
loss_dict["speed_stats"]["optim_time"] = f"{time5 - time4:0.3f}"
loss_dict["speed_stats"]["total_time"] = total_time
loss_dict["lr"] = scheduler.get_last_lr()[0]
loss_dict["batch_num_epoch"] = len(dataloader_train)
self.train_loss_avg = (
self.train_loss_avg * batch_idx + loss_dict["loss"].detach().cpu().item()
) / (batch_idx + 1)
if "acc" in loss_dict["stats"]:
self.train_acc_avg = (
self.train_acc_avg * batch_idx + loss_dict["stats"]["acc"].detach().cpu().item()
) / (batch_idx + 1)
self.log(loss_dict, tag="train")
if self.step_in_epoch % self.validate_interval == 0:
self.validate_epoch(
model=model,
dataloader_val=dataloader_val,
epoch=epoch,
writer=self.writer,
step=batch_idx + 1,
step_in_epoch=self.step_in_epoch,
)
if self.step_in_epoch % self.save_checkpoint_interval == 0:
self.save_checkpoint(
epoch,
model=model,
optim=optim,
scheduler=scheduler,
scaler=scaler,
step=batch_idx + 1,
step_in_epoch=self.step_in_epoch,
data_split_i=kwargs.get("data_split_i", 0),
data_split_num=kwargs.get("data_split_num", 1),
train_loss_avg=self.train_loss_avg,
train_acc_avg=self.train_acc_avg,
)
time_beg = time.perf_counter()
if self.use_ddp or self.use_fsdp or self.use_deepspeed:
train_loss_avg = torch.tensor(self.train_loss_avg, dtype=torch.float32).to(self.device)
train_acc_avg = torch.tensor(self.train_acc_avg, dtype=torch.float32).to(self.device)
dist.all_reduce(train_loss_avg, op=dist.ReduceOp.SUM)
dist.all_reduce(train_acc_avg, op=dist.ReduceOp.SUM)
self.train_loss_avg = train_loss_avg.detach().cpu().item() / self.world_size
self.train_acc_avg = train_acc_avg.detach().cpu().item() / self.world_size
def forward_step(self, model, batch, loss_dict={}):
with maybe_autocast(dtype=self.dtype, use_deepspeed=self.use_deepspeed):
retval = model(**batch)
loss, stats, weight = retval
stats = {k: v for k, v in stats.items() if v is not None}
loss_dict["loss"] = loss
loss_dict["stats"] = stats
loss_dict["weight"] = weight
def backward_step(self, model, scaler, loss_dict={}):
loss = loss_dict["loss"]
if self.use_deepspeed:
scaled_loss = model.backward(loss)
else:
loss = loss / self.accum_grad
if self.use_fp16:
scaler.scale(loss).backward()
else:
loss.backward()
def update_step(self, model, optim, scheduler, scaler, loss_dict=None):
batch_idx = loss_dict["batch_idx"]
if self.use_deepspeed:
model.step()
else:
if (batch_idx + 1) % self.accum_grad == 0:
# Perform gradient clipping if it is set
if self.grad_clip > 0:
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(),
max_norm=self.grad_clip,
norm_type=self.grad_clip_type,
)
if not torch.isfinite(grad_norm):
logging.warning(
f"The grad norm is {grad_norm}. Skipping updating the model."
)
optim.zero_grad() # Reset gradients
return
# Execute an optimization step (update model parameters)
if self.use_ddp or self.use_fsdp:
dist.barrier()
if self.use_fp16:
scaler.step(optim)
scaler.update()
else:
optim.step()
scheduler.step()
# Clear gradients for the next accumulation stage
optim.zero_grad(set_to_none=True)
def validate_epoch(
self,
model=None,
dataloader_val=None,
epoch=None,
writer=None,
**kwargs,
):
"""
Defines the validation process for a single epoch.
Should be implemented with the actual model validation steps.
Args:
epoch (int): The current epoch number.
"""
if self.use_ddp or self.use_fsdp or self.use_deepspeed:
dist.barrier()
logging.info(f"Validate epoch: {epoch}, rank: {self.rank}\n")
model.eval()
with torch.no_grad():
speed_stats = {}
time_beg = time.perf_counter()
time5 = time_beg
dataloader_val.batch_sampler.set_epoch(epoch)
for batch_idx, batch in enumerate(dataloader_val):
loss_dict = {
"speed_stats": {},
"epoch": epoch,
"batch_idx": batch_idx,
"data_split_i": kwargs.get("data_split_i", 0),
"data_split_num": kwargs.get("data_split_num", 1),
"log_step": batch_idx + kwargs.get("start_step", 0),
"batch_total": batch_idx + 1,
"step_in_epoch": batch_idx + 1,
"lr": 0.0,
}
time1 = time.perf_counter()
loss_dict["speed_stats"]["data_load"] = f"{time1 - time_beg:0.3f}"
batch = to_device(batch, self.device)
time2 = time.perf_counter()
self.forward_step(model, batch, loss_dict=loss_dict)
time3 = time.perf_counter()
loss_dict["speed_stats"]["forward_time"] = f"{time3 - time2:0.3f}"
total_time = f"{(time.perf_counter() - time5):0.3f}"
time5 = time.perf_counter()
loss_dict["speed_stats"]["total_time"] = total_time
loss_dict["batch_num_epoch"] = len(dataloader_val)
self.log(loss_dict, tag="val")
time_beg = time.perf_counter()
self.val_loss_avg = (
self.val_loss_avg * batch_idx + loss_dict["loss"].detach().cpu().item()
) / (batch_idx + 1)
if "acc" in loss_dict["stats"]:
self.val_acc_avg = (
self.val_acc_avg * batch_idx
+ loss_dict["stats"]["acc"].detach().cpu().item()
) / (batch_idx + 1)
if self.use_ddp or self.use_fsdp or self.use_deepspeed:
val_loss_avg = torch.tensor(self.val_loss_avg, dtype=torch.float32).to(self.device)
val_acc_avg = torch.tensor(self.val_acc_avg, dtype=torch.float32).to(self.device)
dist.all_reduce(val_loss_avg, op=dist.ReduceOp.SUM)
dist.all_reduce(val_acc_avg, op=dist.ReduceOp.SUM)
self.val_loss_avg = val_loss_avg.detach().cpu().item() / self.world_size
self.val_acc_avg = val_acc_avg.detach().cpu().item() / self.world_size
if kwargs.get("step_in_epoch", None) is None:
ckpt_name = f"model.pt.ep{epoch}"
else:
ckpt_name = f'model.pt.ep{epoch}.{kwargs.get("step_in_epoch")}'
self.val_acc_step_or_eoch[ckpt_name] = self.val_acc_avg
self.val_loss_step_or_eoch[ckpt_name] = self.val_loss_avg
model.train()
def log(
self,
loss_dict: dict = None,
tag="train",
**kwargs,
):
loss = loss_dict["loss"].detach().cpu().item()
epoch = loss_dict["epoch"]
batch_idx = loss_dict["batch_idx"]
step_in_epoch = loss_dict["step_in_epoch"]
batch_total = loss_dict["batch_total"]
batch_num_epoch = loss_dict["batch_num_epoch"]
lr = loss_dict["lr"]
speed_stats = loss_dict["speed_stats"]
stats = loss_dict["stats"]
data_split_i = loss_dict["data_split_i"]
data_split_num = loss_dict["data_split_num"]
log_step = loss_dict.get("log_step", None)
if (batch_idx + 1) % self.log_interval == 0:
batch_idx = log_step if log_step is not None else batch_idx
gpu_info = (
"GPU, memory: usage: {:.3f} GB, "
"peak: {:.3f} GB, "
"cache: {:.3f} GB, "
"cache_peak: {:.3f} GB".format(
torch.cuda.memory_allocated() / 1024 / 1024 / 1024,
torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024,
torch.cuda.memory_reserved() / 1024 / 1024 / 1024,
torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024,
)
)
loss_avg_epoch = getattr(self, f"{tag}_loss_avg")
acc_avg_epoch = getattr(self, f"{tag}_acc_avg")
description = (
f"{tag}, "
f"rank: {self.rank}, "
f"epoch: {epoch}/{self.max_epoch}, "
f"data_slice: {data_split_i}/{data_split_num}, "
f"step_in_slice: {batch_idx + 1}/{batch_num_epoch}, step_in_epoch: {step_in_epoch}, total step: {batch_total}, "
f"(loss_avg_rank: {loss:.3f}), "
f"(loss_avg_slice: {loss_avg_epoch:.3f}), "
f"(ppl_avg_slice: {math.exp(loss_avg_epoch):.3e}), "
f"(acc_avg_slice: {acc_avg_epoch:.3f}), "
f"(lr: {lr:.3e}), "
f"{[(k, round(v.detach().cpu().item(), 3)) for k, v in stats.items()]}, "
f"{speed_stats}, "
f"{gpu_info}"
)
logging.info(description)
description_dict = {
f"rank{self.rank}_loss/{tag}": loss,
f"rank{self.rank}_lr/{tag}": lr,
}
writer = self.writer
if writer is not None:
writer.add_scalar(f"rank{self.rank}_loss/{tag}", loss, batch_total)
writer.add_scalar(f"rank{self.rank}_lr/{tag}", lr, batch_total)
for key, var in stats.items():
writer.add_scalar(f"stats_rank{self.rank}_{key}/{tag}", var.item(), batch_total)
description_dict[f"stats_rank{self.rank}_{key}/{tag}"] = var.item()
for key, var in speed_stats.items():
writer.add_scalar(f"stats_rank{self.rank}_{key}/{tag}", eval(var), batch_total)
description_dict[f"stats_rank{self.rank}_{key}/{tag}"] = eval(var)
if self.use_wandb and wandb is not None:
wandb.log(
description_dict,
setp=batch_total,
)
def close(self, writer=None):
if self.use_ddp or self.use_fsdp:
dist.barrier()
if writer is not None:
writer.close()
if self.use_ddp or self.use_fsdp:
torch.distributed.destroy_process_group()
def warp_model(self, model, **kwargs):
if self.use_deepspeed:
from deepspeed.runtime.zero.stage_1_and_2 import (
estimate_zero2_model_states_mem_needs_all_live,
)
from deepspeed.runtime.zero.stage3 import estimate_zero3_model_states_mem_needs_all_live
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
local_world_size = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
world_size = int(os.environ.get("WORLD_SIZE", 1))
# NOTE(xcsong): look in detail how the memory estimator API works:
# https://deepspeed.readthedocs.io/en/latest/memory.html#discussion
if int(os.environ.get("RANK", 0)) == 0:
logging.info("Estimating model states memory needs (zero2)...")
estimate_zero2_model_states_mem_needs_all_live(
model,
num_gpus_per_node=local_world_size,
num_nodes=world_size // local_world_size,
)
logging.info("Estimating model states memory needs (zero3)...")
estimate_zero3_model_states_mem_needs_all_live(
model,
num_gpus_per_node=local_world_size,
num_nodes=world_size // local_world_size,
)
device = None # Init device later
pass # Init DeepSpeed later
elif self.use_ddp:
local_rank = int(os.environ.get("LOCAL_RANK", 0))
model = model.cuda(local_rank)
model = DDP(
model,
device_ids=[local_rank],
find_unused_parameters=kwargs.get("train_conf", {}).get(
"find_unused_parameters", False
),
)
else:
model = model.to(device=kwargs.get("device", "cuda"))
return model
def warp_optim_scheduler(self, model, **kwargs):
from funasr.optimizers import optim_classes
from funasr.schedulers import scheduler_classes
from omegaconf import OmegaConf, DictConfig
import json
# optim
logging.info("Build optim")
optim = kwargs.get("optim", "adam")
assert optim in optim_classes
optim_class = optim_classes.get(optim)
optim = optim_class(model.parameters(), **kwargs.get("optim_conf"))
# scheduler
logging.info("Build scheduler")
scheduler = kwargs.get("scheduler", "warmuplr")
assert scheduler in scheduler_classes
scheduler_class = scheduler_classes.get(scheduler)
scheduler = scheduler_class(optim, **kwargs.get("scheduler_conf"))
if self.use_deepspeed:
import deepspeed
args = OmegaConf.create({"deepspeed_config": self.deepspeed_config})
with open(self.deepspeed_config, "r") as fin:
ds_configs = json.load(fin)
if "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
self.dtype = torch.bfloat16
if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
self.dtype = torch.float16
if "optimizer" in ds_configs:
# NOTE(xcsong): Disable custom optimizer if it is set in ds_config,
# extremely useful when enable cpu_offload, DeepspeedCpuAdam
# could be 4~5x faster than torch native adam
optim = None
if "scheduler" in ds_configs:
scheduler = None
else:
def scheduler(opt):
return scheduler_class(opt, **kwargs.get("scheduler_conf"))
model, optimizer, _, scheduler = deepspeed.initialize(
args=args,
model=model,
optimizer=optim,
lr_scheduler=scheduler,
model_parameters=model.parameters(),
)
return model, optim, scheduler