FunASR/runtime/python/onnxruntime/funasr_onnx/sensevoice_bin.py

146 lines
5.2 KiB
Python

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/FunAudioLLM/SenseVoice). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import torch
import os.path
import librosa
import numpy as np
from pathlib import Path
from typing import List, Union, Tuple
from .utils.utils import (
CharTokenizer,
Hypothesis,
ONNXRuntimeError,
OrtInferSession,
TokenIDConverter,
get_logger,
read_yaml,
)
from .utils.frontend import WavFrontend
logging = get_logger()
class SenseVoiceSmallONNX:
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
https://arxiv.org/abs/2206.08317
"""
def __init__(
self,
model_dir: Union[str, Path] = None,
batch_size: int = 1,
device_id: Union[str, int] = "-1",
plot_timestamp_to: str = "",
quantize: bool = False,
intra_op_num_threads: int = 4,
cache_dir: str = None,
**kwargs,
):
if quantize:
model_file = os.path.join(model_dir, "model_quant.onnx")
else:
model_file = os.path.join(model_dir, "model.onnx")
config_file = os.path.join(model_dir, "config.yaml")
cmvn_file = os.path.join(model_dir, "am.mvn")
config = read_yaml(config_file)
# token_list = os.path.join(model_dir, "tokens.json")
# with open(token_list, "r", encoding="utf-8") as f:
# token_list = json.load(f)
# self.converter = TokenIDConverter(token_list)
self.tokenizer = CharTokenizer()
config["frontend_conf"]['cmvn_file'] = cmvn_file
self.frontend = WavFrontend(**config["frontend_conf"])
self.ort_infer = OrtInferSession(
model_file, device_id, intra_op_num_threads=intra_op_num_threads
)
self.batch_size = batch_size
self.blank_id = 0
def __call__(self,
wav_content: Union[str, np.ndarray, List[str]],
language: List,
textnorm: List,
tokenizer=None,
**kwargs) -> List:
waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq)
waveform_nums = len(waveform_list)
asr_res = []
for beg_idx in range(0, waveform_nums, self.batch_size):
end_idx = min(waveform_nums, beg_idx + self.batch_size)
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
ctc_logits, encoder_out_lens = self.infer(feats,
feats_len,
np.array(language, dtype=np.int32),
np.array(textnorm, dtype=np.int32)
)
# back to torch.Tensor
ctc_logits = torch.from_numpy(ctc_logits).float()
# support batch_size=1 only currently
x = ctc_logits[0, : encoder_out_lens[0].item(), :]
yseq = x.argmax(dim=-1)
yseq = torch.unique_consecutive(yseq, dim=-1)
mask = yseq != self.blank_id
token_int = yseq[mask].tolist()
if tokenizer is not None:
asr_res.append(tokenizer.tokens2text(token_int))
else:
asr_res.append(token_int)
return asr_res
def load_data(self, wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List:
def load_wav(path: str) -> np.ndarray:
waveform, _ = librosa.load(path, sr=fs)
return waveform
if isinstance(wav_content, np.ndarray):
return [wav_content]
if isinstance(wav_content, str):
return [load_wav(wav_content)]
if isinstance(wav_content, list):
return [load_wav(path) for path in wav_content]
raise TypeError(f"The type of {wav_content} is not in [str, np.ndarray, list]")
def extract_feat(self, waveform_list: List[np.ndarray]) -> Tuple[np.ndarray, np.ndarray]:
feats, feats_len = [], []
for waveform in waveform_list:
speech, _ = self.frontend.fbank(waveform)
feat, feat_len = self.frontend.lfr_cmvn(speech)
feats.append(feat)
feats_len.append(feat_len)
feats = self.pad_feats(feats, np.max(feats_len))
feats_len = np.array(feats_len).astype(np.int32)
return feats, feats_len
@staticmethod
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
pad_width = ((0, max_feat_len - cur_len), (0, 0))
return np.pad(feat, pad_width, "constant", constant_values=0)
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
feats = np.array(feat_res).astype(np.float32)
return feats
def infer(self,
feats: np.ndarray,
feats_len: np.ndarray,
language: np.ndarray,
textnorm: np.ndarray,) -> Tuple[np.ndarray, np.ndarray]:
outputs = self.ort_infer([feats, feats_len, language, textnorm])
return outputs