#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/FunAudioLLM/SenseVoice). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import torch import os.path import librosa import numpy as np from pathlib import Path from typing import List, Union, Tuple from .utils.utils import ( CharTokenizer, Hypothesis, ONNXRuntimeError, OrtInferSession, TokenIDConverter, get_logger, read_yaml, ) from .utils.frontend import WavFrontend logging = get_logger() class SenseVoiceSmallONNX: """ Author: Speech Lab of DAMO Academy, Alibaba Group Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition https://arxiv.org/abs/2206.08317 """ def __init__( self, model_dir: Union[str, Path] = None, batch_size: int = 1, device_id: Union[str, int] = "-1", plot_timestamp_to: str = "", quantize: bool = False, intra_op_num_threads: int = 4, cache_dir: str = None, **kwargs, ): if quantize: model_file = os.path.join(model_dir, "model_quant.onnx") else: model_file = os.path.join(model_dir, "model.onnx") config_file = os.path.join(model_dir, "config.yaml") cmvn_file = os.path.join(model_dir, "am.mvn") config = read_yaml(config_file) # token_list = os.path.join(model_dir, "tokens.json") # with open(token_list, "r", encoding="utf-8") as f: # token_list = json.load(f) # self.converter = TokenIDConverter(token_list) self.tokenizer = CharTokenizer() config["frontend_conf"]['cmvn_file'] = cmvn_file self.frontend = WavFrontend(**config["frontend_conf"]) self.ort_infer = OrtInferSession( model_file, device_id, intra_op_num_threads=intra_op_num_threads ) self.batch_size = batch_size self.blank_id = 0 def __call__(self, wav_content: Union[str, np.ndarray, List[str]], language: List, textnorm: List, tokenizer=None, **kwargs) -> List: waveform_list = self.load_data(wav_content, self.frontend.opts.frame_opts.samp_freq) waveform_nums = len(waveform_list) asr_res = [] for beg_idx in range(0, waveform_nums, self.batch_size): end_idx = min(waveform_nums, beg_idx + self.batch_size) feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx]) ctc_logits, encoder_out_lens = self.infer(feats, feats_len, np.array(language, dtype=np.int32), np.array(textnorm, dtype=np.int32) ) # back to torch.Tensor ctc_logits = torch.from_numpy(ctc_logits).float() # support batch_size=1 only currently x = ctc_logits[0, : encoder_out_lens[0].item(), :] yseq = x.argmax(dim=-1) yseq = torch.unique_consecutive(yseq, dim=-1) mask = yseq != self.blank_id token_int = yseq[mask].tolist() if tokenizer is not None: asr_res.append(tokenizer.tokens2text(token_int)) else: asr_res.append(token_int) return asr_res def load_data(self, wav_content: Union[str, np.ndarray, List[str]], fs: int = None) -> List: def load_wav(path: str) -> np.ndarray: waveform, _ = librosa.load(path, sr=fs) return waveform if isinstance(wav_content, np.ndarray): return [wav_content] if isinstance(wav_content, str): return [load_wav(wav_content)] if isinstance(wav_content, list): return [load_wav(path) for path in wav_content] raise TypeError(f"The type of {wav_content} is not in [str, np.ndarray, list]") def extract_feat(self, waveform_list: List[np.ndarray]) -> Tuple[np.ndarray, np.ndarray]: feats, feats_len = [], [] for waveform in waveform_list: speech, _ = self.frontend.fbank(waveform) feat, feat_len = self.frontend.lfr_cmvn(speech) feats.append(feat) feats_len.append(feat_len) feats = self.pad_feats(feats, np.max(feats_len)) feats_len = np.array(feats_len).astype(np.int32) return feats, feats_len @staticmethod def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray: def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray: pad_width = ((0, max_feat_len - cur_len), (0, 0)) return np.pad(feat, pad_width, "constant", constant_values=0) feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats] feats = np.array(feat_res).astype(np.float32) return feats def infer(self, feats: np.ndarray, feats_len: np.ndarray, language: np.ndarray, textnorm: np.ndarray,) -> Tuple[np.ndarray, np.ndarray]: outputs = self.ort_infer([feats, feats_len, language, textnorm]) return outputs