mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
132 lines
4.6 KiB
Python
132 lines
4.6 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
|
|
|
from funasr.register import tables
|
|
|
|
|
|
@tables.register("adaptor_classes", "Linear")
|
|
class Linear(nn.Module):
|
|
def __init__(self, downsample_rate, encoder_dim, llm_dim, ffn_dim: int = 2048, **kwargs):
|
|
super().__init__()
|
|
self.k = downsample_rate
|
|
self.encoder_dim = encoder_dim
|
|
self.llm_dim = llm_dim
|
|
self.linear1 = nn.Linear(self.encoder_dim * self.k, ffn_dim)
|
|
self.relu = nn.ReLU()
|
|
self.linear2 = nn.Linear(ffn_dim, self.llm_dim)
|
|
|
|
def forward(self, x):
|
|
batch_size, seq_len, dim = x.size()
|
|
num_frames_to_discard = seq_len % self.k
|
|
if num_frames_to_discard > 0:
|
|
x = x[:, :-num_frames_to_discard, :]
|
|
seq_len = x.size(1)
|
|
|
|
x = x.contiguous()
|
|
x = x.view(batch_size, seq_len // self.k, dim * self.k)
|
|
x = self.linear1(x)
|
|
x = self.relu(x)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
|
|
@tables.register("adaptor_classes", "QFormer")
|
|
class EncoderProjectorQFormer(nn.Module):
|
|
def __init__(self, downsample_rate, encoder_dim, llm_dim, ffn_dim: int = 2048, **kwargs):
|
|
super().__init__()
|
|
self.encoder_dim = encoder_dim
|
|
self.llm_dim = llm_dim
|
|
from transformers import Blip2QFormerConfig, Blip2QFormerModel
|
|
|
|
configuration = Blip2QFormerConfig()
|
|
configuration.encoder_hidden_size = self.encoder_dim
|
|
configuration.num_hidden_layers = 2
|
|
|
|
self.query_len = 64
|
|
self.query = nn.Parameter(torch.zeros(1, self.query_len, configuration.hidden_size))
|
|
self.query.data.normal_(mean=0.0, std=1.0)
|
|
self.qformer = Blip2QFormerModel(configuration)
|
|
|
|
self.linear = nn.Linear(configuration.hidden_size, self.llm_dim)
|
|
self.norm = nn.LayerNorm(self.llm_dim, eps=1e-5)
|
|
|
|
def forward(self, x, atts):
|
|
query = self.query.expand(x.shape[0], -1, -1)
|
|
|
|
query_output = self.qformer(
|
|
query_embeds=query,
|
|
encoder_hidden_states=x,
|
|
encoder_attention_mask=atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
query_proj = self.norm(self.linear(query_output.last_hidden_state))
|
|
|
|
return query_proj
|
|
|
|
|
|
@tables.register("adaptor_classes", "Transformer")
|
|
class Transformer(nn.Module):
|
|
def __init__(
|
|
self, downsample_rate=2, encoder_dim=1280, llm_dim=4096, ffn_dim: int = 2048, **kwargs
|
|
):
|
|
super().__init__()
|
|
self.k = downsample_rate
|
|
self.encoder_dim = encoder_dim
|
|
self.llm_dim = llm_dim
|
|
self.linear1 = nn.Linear(self.encoder_dim * self.k, ffn_dim)
|
|
self.relu = nn.ReLU()
|
|
self.linear2 = nn.Linear(ffn_dim, self.llm_dim)
|
|
from funasr.models.transformer.encoder import EncoderLayer
|
|
from funasr.models.transformer.attention import MultiHeadedAttention
|
|
from funasr.models.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
|
|
|
self.blocks = None
|
|
if kwargs.get("n_layer", 2) > 0:
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
EncoderLayer(
|
|
llm_dim,
|
|
MultiHeadedAttention(
|
|
kwargs.get("attention_heads", 8),
|
|
llm_dim,
|
|
kwargs.get("attention_dropout_rate", 0.0),
|
|
),
|
|
PositionwiseFeedForward(
|
|
llm_dim,
|
|
llm_dim // 4,
|
|
kwargs.get("dropout_rate", 0.0),
|
|
),
|
|
kwargs.get("dropout_rate", 0.0),
|
|
)
|
|
for i in range(kwargs.get("n_layer", 2))
|
|
]
|
|
)
|
|
|
|
def forward(self, x, ilens=None):
|
|
|
|
batch_size, seq_len, dim = x.size()
|
|
# num_frames_to_discard = seq_len % self.k
|
|
chunk_num = (seq_len - 1) // self.k + 1
|
|
pad_num = chunk_num * self.k - seq_len
|
|
x = F.pad(x, (0, 0, 0, pad_num, 0, 0), value=0.0)
|
|
# if num_frames_to_discard > 0:
|
|
# x = x[:, :-num_frames_to_discard, :]
|
|
seq_len = x.size(1)
|
|
|
|
x = x.contiguous()
|
|
x = x.view(batch_size, chunk_num, dim * self.k)
|
|
x = self.linear1(x)
|
|
x = self.relu(x)
|
|
x = self.linear2(x)
|
|
|
|
olens = None
|
|
olens = (ilens - 1) // self.k + 1
|
|
masks = (~make_pad_mask(olens)[:, None, :]).to(x.device)
|
|
if self.blocks is not None:
|
|
for layer, block in enumerate(self.blocks):
|
|
x, masks = block(x, masks)
|
|
return x, olens
|