import torch import torch.nn as nn import torch.nn.functional as F from funasr.models.transformer.utils.nets_utils import make_pad_mask from funasr.register import tables @tables.register("adaptor_classes", "Linear") class Linear(nn.Module): def __init__(self, downsample_rate, encoder_dim, llm_dim, ffn_dim: int = 2048, **kwargs): super().__init__() self.k = downsample_rate self.encoder_dim = encoder_dim self.llm_dim = llm_dim self.linear1 = nn.Linear(self.encoder_dim * self.k, ffn_dim) self.relu = nn.ReLU() self.linear2 = nn.Linear(ffn_dim, self.llm_dim) def forward(self, x): batch_size, seq_len, dim = x.size() num_frames_to_discard = seq_len % self.k if num_frames_to_discard > 0: x = x[:, :-num_frames_to_discard, :] seq_len = x.size(1) x = x.contiguous() x = x.view(batch_size, seq_len // self.k, dim * self.k) x = self.linear1(x) x = self.relu(x) x = self.linear2(x) return x @tables.register("adaptor_classes", "QFormer") class EncoderProjectorQFormer(nn.Module): def __init__(self, downsample_rate, encoder_dim, llm_dim, ffn_dim: int = 2048, **kwargs): super().__init__() self.encoder_dim = encoder_dim self.llm_dim = llm_dim from transformers import Blip2QFormerConfig, Blip2QFormerModel configuration = Blip2QFormerConfig() configuration.encoder_hidden_size = self.encoder_dim configuration.num_hidden_layers = 2 self.query_len = 64 self.query = nn.Parameter(torch.zeros(1, self.query_len, configuration.hidden_size)) self.query.data.normal_(mean=0.0, std=1.0) self.qformer = Blip2QFormerModel(configuration) self.linear = nn.Linear(configuration.hidden_size, self.llm_dim) self.norm = nn.LayerNorm(self.llm_dim, eps=1e-5) def forward(self, x, atts): query = self.query.expand(x.shape[0], -1, -1) query_output = self.qformer( query_embeds=query, encoder_hidden_states=x, encoder_attention_mask=atts, return_dict=True, ) query_proj = self.norm(self.linear(query_output.last_hidden_state)) return query_proj @tables.register("adaptor_classes", "Transformer") class Transformer(nn.Module): def __init__( self, downsample_rate=2, encoder_dim=1280, llm_dim=4096, ffn_dim: int = 2048, **kwargs ): super().__init__() self.k = downsample_rate self.encoder_dim = encoder_dim self.llm_dim = llm_dim self.linear1 = nn.Linear(self.encoder_dim * self.k, ffn_dim) self.relu = nn.ReLU() self.linear2 = nn.Linear(ffn_dim, self.llm_dim) from funasr.models.transformer.encoder import EncoderLayer from funasr.models.transformer.attention import MultiHeadedAttention from funasr.models.transformer.positionwise_feed_forward import PositionwiseFeedForward self.blocks = None if kwargs.get("n_layer", 2) > 0: self.blocks = nn.ModuleList( [ EncoderLayer( llm_dim, MultiHeadedAttention( kwargs.get("attention_heads", 8), llm_dim, kwargs.get("attention_dropout_rate", 0.0), ), PositionwiseFeedForward( llm_dim, llm_dim // 4, kwargs.get("dropout_rate", 0.0), ), kwargs.get("dropout_rate", 0.0), ) for i in range(kwargs.get("n_layer", 2)) ] ) def forward(self, x, ilens=None): batch_size, seq_len, dim = x.size() # num_frames_to_discard = seq_len % self.k chunk_num = (seq_len - 1) // self.k + 1 pad_num = chunk_num * self.k - seq_len x = F.pad(x, (0, 0, 0, pad_num, 0, 0), value=0.0) # if num_frames_to_discard > 0: # x = x[:, :-num_frames_to_discard, :] seq_len = x.size(1) x = x.contiguous() x = x.view(batch_size, chunk_num, dim * self.k) x = self.linear1(x) x = self.relu(x) x = self.linear2(x) olens = None olens = (ilens - 1) // self.k + 1 masks = (~make_pad_mask(olens)[:, None, :]).to(x.device) if self.blocks is not None: for layer, block in enumerate(self.blocks): x, masks = block(x, masks) return x, olens