FunASR/funasr/datasets/small_datasets/build_dataloader.py
speech_asr 05d4176e88 update
2023-04-18 19:28:33 +08:00

85 lines
3.0 KiB
Python

import logging
import numpy as np
import torch
from funasr.datasets.small_datasets.collate_fn import CommonCollateFn
from funasr.datasets.small_datasets.dataset import ESPnetDataset
from funasr.datasets.small_datasets.length_batch_sampler import LengthBatchSampler
from funasr.datasets.small_datasets.preprocessor import build_preprocess
from funasr.datasets.small_datasets.sequence_iter_factory import SequenceIterFactory
def build_dataloader(args, mode="train"):
# preprocess
preprocess_fn = build_preprocess(args, train=mode == "train")
# collate
if args.task_name in ["punc", "lm"]:
collate_fn = CommonCollateFn(int_pad_value=0)
else:
collate_fn = CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
# dataset
dest_sample_rate = args.frontend_conf["fs"] if (
args.frontend_conf is not None and "fs" in args.frontend_conf) else 16000
if mode == "train":
data_path_and_name_and_type = args.train_data_path_and_name_and_type
shape_files = args.train_shape_file
elif mode == "valid":
data_path_and_name_and_type = args.valid_data_path_and_name_and_type
shape_files = args.valid_shape_file
else:
raise NotImplementedError(f"mode={mode}")
dataset = ESPnetDataset(
data_path_and_name_and_type,
preprocess=preprocess_fn,
dest_sample_rate=dest_sample_rate,
)
# sampler
dataset_conf = args.dataset_conf
batch_sampler = LengthBatchSampler(
batch_bins=dataset_conf["batch_size"],
shape_files=shape_files,
sort_in_batch=dataset_conf["sort_in_batch"] if hasattr(dataset_conf, "sort_in_batch") else "descending",
sort_batch=dataset_conf["sort_batch"] if hasattr(dataset_conf, "sort_batch") else "ascending",
drop_last=False,
padding=True,
)
batches = list(batch_sampler)
bs_list = [len(batch) for batch in batches]
logging.info(f"[{mode}] dataset:\n{dataset}")
logging.info(f"[{mode}] Batch sampler: {batch_sampler}")
logging.info(
f"[{mode}] mini-batch sizes summary: N-batch={len(bs_list)}, "
f"mean={np.mean(bs_list):.1f}, min={np.min(bs_list)}, max={np.max(bs_list)}"
)
if args.scheduler == "tri_stage" and mode == "train":
args.max_update = len(bs_list) * args.max_epoch
logging.info("Max update: {}".format(args.max_update))
if args.distributed:
world_size = torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
for batch in batches:
if len(batch) < world_size:
raise RuntimeError(
f"The batch-size must be equal or more than world_size: "
f"{len(batch)} < {world_size}"
)
batches = [batch[rank::world_size] for batch in batches]
# dataloader
return SequenceIterFactory(
dataset=dataset,
batches=batches,
seed=args.seed,
shuffle=mode == "train",
num_workers=args.num_workers,
collate_fn=collate_fn,
pin_memory=args.ngpu > 0,
)