mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update
This commit is contained in:
parent
da9ac240cb
commit
05d4176e88
@ -1,16 +1,26 @@
|
||||
import logging
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from funasr.datasets.small_datasets.collate_fn import CommonCollateFn
|
||||
from funasr.datasets.small_datasets.dataset import ESPnetDataset
|
||||
from funasr.datasets.small_datasets.preprocessor import build_preprocess
|
||||
from funasr.datasets.small_datasets.length_batch_sampler import LengthBatchSampler
|
||||
from funasr.datasets.small_datasets.preprocessor import build_preprocess
|
||||
from funasr.datasets.small_datasets.sequence_iter_factory import SequenceIterFactory
|
||||
|
||||
|
||||
def build_dataloader(args, mode="train"):
|
||||
# preprocess
|
||||
preprocess_fn = build_preprocess(args, train=mode == "train")
|
||||
|
||||
# collate
|
||||
if args.task_name in ["punc", "lm"]:
|
||||
collate_fn = CommonCollateFn(int_pad_value=0)
|
||||
else:
|
||||
collate_fn = CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
|
||||
|
||||
# dataset
|
||||
dest_sample_rate = args.frontend_conf["fs"] if (
|
||||
args.frontend_conf is not None and "fs" in args.frontend_conf) else 16000
|
||||
if mode == "train":
|
||||
@ -27,6 +37,7 @@ def build_dataloader(args, mode="train"):
|
||||
dest_sample_rate=dest_sample_rate,
|
||||
)
|
||||
|
||||
# sampler
|
||||
dataset_conf = args.dataset_conf
|
||||
batch_sampler = LengthBatchSampler(
|
||||
batch_bins=dataset_conf["batch_size"],
|
||||
@ -60,3 +71,14 @@ def build_dataloader(args, mode="train"):
|
||||
f"{len(batch)} < {world_size}"
|
||||
)
|
||||
batches = [batch[rank::world_size] for batch in batches]
|
||||
|
||||
# dataloader
|
||||
return SequenceIterFactory(
|
||||
dataset=dataset,
|
||||
batches=batches,
|
||||
seed=args.seed,
|
||||
shuffle=mode == "train",
|
||||
num_workers=args.num_workers,
|
||||
collate_fn=collate_fn,
|
||||
pin_memory=args.ngpu > 0,
|
||||
)
|
||||
93
funasr/datasets/small_datasets/collate_fn.py
Normal file
93
funasr/datasets/small_datasets/collate_fn.py
Normal file
@ -0,0 +1,93 @@
|
||||
from typing import Collection
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
from typeguard import check_return_type
|
||||
|
||||
from funasr.modules.nets_utils import pad_list
|
||||
|
||||
|
||||
class CommonCollateFn:
|
||||
"""Functor class of common_collate_fn()"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
float_pad_value: Union[float, int] = 0.0,
|
||||
int_pad_value: int = -32768,
|
||||
not_sequence: Collection[str] = (),
|
||||
max_sample_size=None
|
||||
):
|
||||
assert check_argument_types()
|
||||
self.float_pad_value = float_pad_value
|
||||
self.int_pad_value = int_pad_value
|
||||
self.not_sequence = set(not_sequence)
|
||||
self.max_sample_size = max_sample_size
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self.__class__}(float_pad_value={self.float_pad_value}, "
|
||||
f"int_pad_value={self.float_pad_value})"
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self, data: Collection[Tuple[str, Dict[str, np.ndarray]]]
|
||||
) -> Tuple[List[str], Dict[str, torch.Tensor]]:
|
||||
return common_collate_fn(
|
||||
data,
|
||||
float_pad_value=self.float_pad_value,
|
||||
int_pad_value=self.int_pad_value,
|
||||
not_sequence=self.not_sequence,
|
||||
)
|
||||
|
||||
|
||||
def common_collate_fn(
|
||||
data: Collection[Tuple[str, Dict[str, np.ndarray]]],
|
||||
float_pad_value: Union[float, int] = 0.0,
|
||||
int_pad_value: int = -32768,
|
||||
not_sequence: Collection[str] = (),
|
||||
) -> Tuple[List[str], Dict[str, torch.Tensor]]:
|
||||
"""Concatenate ndarray-list to an array and convert to torch.Tensor.
|
||||
"""
|
||||
assert check_argument_types()
|
||||
uttids = [u for u, _ in data]
|
||||
data = [d for _, d in data]
|
||||
|
||||
assert all(set(data[0]) == set(d) for d in data), "dict-keys mismatching"
|
||||
assert all(
|
||||
not k.endswith("_lengths") for k in data[0]
|
||||
), f"*_lengths is reserved: {list(data[0])}"
|
||||
|
||||
output = {}
|
||||
for key in data[0]:
|
||||
if data[0][key].dtype.kind == "i":
|
||||
pad_value = int_pad_value
|
||||
else:
|
||||
pad_value = float_pad_value
|
||||
|
||||
array_list = [d[key] for d in data]
|
||||
tensor_list = [torch.from_numpy(a) for a in array_list]
|
||||
tensor = pad_list(tensor_list, pad_value)
|
||||
output[key] = tensor
|
||||
|
||||
if key not in not_sequence:
|
||||
lens = torch.tensor([d[key].shape[0] for d in data], dtype=torch.long)
|
||||
output[key + "_lengths"] = lens
|
||||
|
||||
output = (uttids, output)
|
||||
assert check_return_type(output)
|
||||
return output
|
||||
|
||||
def crop_to_max_size(feature, target_size):
|
||||
size = len(feature)
|
||||
diff = size - target_size
|
||||
if diff <= 0:
|
||||
return feature
|
||||
|
||||
start = np.random.randint(0, diff + 1)
|
||||
end = size - diff + start
|
||||
return feature[start:end]
|
||||
189
funasr/datasets/small_datasets/sequence_iter_factory.py
Normal file
189
funasr/datasets/small_datasets/sequence_iter_factory.py
Normal file
@ -0,0 +1,189 @@
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from funasr.datasets.small_datasets.collate_fn import CommonCollateFn
|
||||
from funasr.datasets.small_datasets.dataset import ESPnetDataset
|
||||
from funasr.datasets.small_datasets.length_batch_sampler import LengthBatchSampler
|
||||
from funasr.datasets.small_datasets.preprocessor import build_preprocess
|
||||
from funasr.iterators.abs_iter_factory import AbsIterFactory
|
||||
from funasr.samplers.abs_sampler import AbsSampler
|
||||
|
||||
|
||||
class RawSampler(AbsSampler):
|
||||
def __init__(self, batches):
|
||||
self.batches = batches
|
||||
|
||||
def __len__(self):
|
||||
return len(self.batches)
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self.batches)
|
||||
|
||||
def generate(self, seed):
|
||||
return list(self.batches)
|
||||
|
||||
|
||||
class SequenceIterFactory(AbsIterFactory):
|
||||
"""Build iterator for each epoch.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, args, mode="train"):
|
||||
|
||||
# preprocess
|
||||
preprocess_fn = build_preprocess(args, train=mode == "train")
|
||||
|
||||
# collate
|
||||
if args.task_name in ["punc", "lm"]:
|
||||
collate_fn = CommonCollateFn(int_pad_value=0)
|
||||
else:
|
||||
collate_fn = CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
|
||||
|
||||
# dataset
|
||||
dest_sample_rate = args.frontend_conf["fs"] if (
|
||||
args.frontend_conf is not None and "fs" in args.frontend_conf) else 16000
|
||||
if mode == "train":
|
||||
data_path_and_name_and_type = args.train_data_path_and_name_and_type
|
||||
shape_files = args.train_shape_file
|
||||
elif mode == "valid":
|
||||
data_path_and_name_and_type = args.valid_data_path_and_name_and_type
|
||||
shape_files = args.valid_shape_file
|
||||
else:
|
||||
raise NotImplementedError(f"mode={mode}")
|
||||
dataset = ESPnetDataset(
|
||||
data_path_and_name_and_type,
|
||||
preprocess=preprocess_fn,
|
||||
dest_sample_rate=dest_sample_rate,
|
||||
)
|
||||
|
||||
# sampler
|
||||
dataset_conf = args.dataset_conf
|
||||
batch_sampler = LengthBatchSampler(
|
||||
batch_bins=dataset_conf["batch_size"],
|
||||
shape_files=shape_files,
|
||||
sort_in_batch=dataset_conf["sort_in_batch"] if hasattr(dataset_conf, "sort_in_batch") else "descending",
|
||||
sort_batch=dataset_conf["sort_batch"] if hasattr(dataset_conf, "sort_batch") else "ascending",
|
||||
drop_last=False,
|
||||
padding=True,
|
||||
)
|
||||
|
||||
batches = list(batch_sampler)
|
||||
bs_list = [len(batch) for batch in batches]
|
||||
logging.info(f"[{mode}] dataset:\n{dataset}")
|
||||
logging.info(f"[{mode}] Batch sampler: {batch_sampler}")
|
||||
logging.info(
|
||||
f"[{mode}] mini-batch sizes summary: N-batch={len(bs_list)}, "
|
||||
f"mean={np.mean(bs_list):.1f}, min={np.min(bs_list)}, max={np.max(bs_list)}"
|
||||
)
|
||||
|
||||
if args.scheduler == "tri_stage" and mode == "train":
|
||||
args.max_update = len(bs_list) * args.max_epoch
|
||||
logging.info("Max update: {}".format(args.max_update))
|
||||
|
||||
if args.distributed:
|
||||
world_size = torch.distributed.get_world_size()
|
||||
rank = torch.distributed.get_rank()
|
||||
for batch in batches:
|
||||
if len(batch) < world_size:
|
||||
raise RuntimeError(
|
||||
f"The batch-size must be equal or more than world_size: "
|
||||
f"{len(batch)} < {world_size}"
|
||||
)
|
||||
batches = [batch[rank::world_size] for batch in batches]
|
||||
|
||||
if not isinstance(batches, AbsSampler):
|
||||
self.sampler = RawSampler(batches)
|
||||
else:
|
||||
self.sampler = batches
|
||||
|
||||
self.dataset = dataset
|
||||
self.num_iters_per_epoch = None
|
||||
self.shuffle = mode == "train"
|
||||
self.seed = args.seed
|
||||
self.num_workers = args.num_workers
|
||||
self.collate_fn = collate_fn
|
||||
self.pin_memory = args.ngpu > 0
|
||||
|
||||
def build_iter(self, epoch: int, shuffle: bool = None) -> DataLoader:
|
||||
if shuffle is None:
|
||||
shuffle = self.shuffle
|
||||
|
||||
if self.num_iters_per_epoch is not None:
|
||||
N = len(self.sampler)
|
||||
# If corpus size is larger than the num_per_epoch
|
||||
if self.num_iters_per_epoch < N:
|
||||
N = len(self.sampler)
|
||||
real_epoch, offset = divmod(self.num_iters_per_epoch * epoch, N)
|
||||
|
||||
if offset >= self.num_iters_per_epoch:
|
||||
current_batches = self.sampler.generate(real_epoch + self.seed)
|
||||
if shuffle:
|
||||
np.random.RandomState(real_epoch + self.seed).shuffle(
|
||||
current_batches
|
||||
)
|
||||
batches = current_batches[
|
||||
offset - self.num_iters_per_epoch: offset
|
||||
]
|
||||
else:
|
||||
prev_batches = self.sampler.generate(real_epoch - 1 + self.seed)
|
||||
current_batches = self.sampler.generate(real_epoch + self.seed)
|
||||
if shuffle:
|
||||
np.random.RandomState(real_epoch - 1 + self.seed).shuffle(
|
||||
prev_batches
|
||||
)
|
||||
np.random.RandomState(real_epoch + self.seed).shuffle(
|
||||
current_batches
|
||||
)
|
||||
batches = (
|
||||
prev_batches[offset - self.num_iters_per_epoch:]
|
||||
+ current_batches[:offset]
|
||||
)
|
||||
|
||||
# If corpus size is less than the num_per_epoch
|
||||
else:
|
||||
_epoch, _cursor = divmod(self.num_iters_per_epoch * (epoch - 1), N)
|
||||
_remain = self.num_iters_per_epoch
|
||||
batches = []
|
||||
current_batches = self.sampler.generate(_epoch + self.seed)
|
||||
if shuffle:
|
||||
np.random.RandomState(_epoch + self.seed).shuffle(current_batches)
|
||||
while _remain > 0:
|
||||
|
||||
_batches = current_batches[_cursor: _cursor + _remain]
|
||||
batches += _batches
|
||||
if _cursor + _remain >= N:
|
||||
_epoch += 1
|
||||
_cursor = 0
|
||||
current_batches = self.sampler.generate(_epoch + self.seed)
|
||||
if shuffle:
|
||||
np.random.RandomState(_epoch + self.seed).shuffle(
|
||||
current_batches
|
||||
)
|
||||
else:
|
||||
_cursor = _cursor + _remain
|
||||
_remain -= len(_batches)
|
||||
|
||||
assert len(batches) == self.num_iters_per_epoch
|
||||
|
||||
else:
|
||||
batches = self.sampler.generate(epoch + self.seed)
|
||||
if shuffle:
|
||||
np.random.RandomState(epoch + self.seed).shuffle(batches)
|
||||
|
||||
# For backward compatibility for pytorch DataLoader
|
||||
if self.collate_fn is not None:
|
||||
kwargs = dict(collate_fn=self.collate_fn)
|
||||
else:
|
||||
kwargs = {}
|
||||
|
||||
return DataLoader(
|
||||
dataset=self.dataset,
|
||||
batch_sampler=batches,
|
||||
num_workers=self.num_workers,
|
||||
pin_memory=self.pin_memory,
|
||||
**kwargs,
|
||||
)
|
||||
@ -1,9 +1,10 @@
|
||||
from funasr.datasets.large_datasets.build_dataloader import LargeDataLoader
|
||||
|
||||
from funasr.datasets.small_datasets.build_dataloader import build_dataloader
|
||||
|
||||
def build_dataloader(args):
|
||||
if args.dataset_type == "small":
|
||||
pass
|
||||
train_iter_factory = LargeDataLoader(args, mode="train")
|
||||
valid_iter_factory = LargeDataLoader(args, mode="valid")
|
||||
elif args.dataset_type == "large":
|
||||
train_iter_factory = LargeDataLoader(args, mode="train")
|
||||
valid_iter_factory = LargeDataLoader(args, mode="valid")
|
||||
|
||||
Loading…
Reference in New Issue
Block a user