This commit is contained in:
speech_asr 2023-04-18 19:28:33 +08:00
parent da9ac240cb
commit 05d4176e88
4 changed files with 309 additions and 4 deletions

View File

@ -1,16 +1,26 @@
import logging
import os
import numpy as np
import torch
from funasr.datasets.small_datasets.collate_fn import CommonCollateFn
from funasr.datasets.small_datasets.dataset import ESPnetDataset
from funasr.datasets.small_datasets.preprocessor import build_preprocess
from funasr.datasets.small_datasets.length_batch_sampler import LengthBatchSampler
from funasr.datasets.small_datasets.preprocessor import build_preprocess
from funasr.datasets.small_datasets.sequence_iter_factory import SequenceIterFactory
def build_dataloader(args, mode="train"):
# preprocess
preprocess_fn = build_preprocess(args, train=mode == "train")
# collate
if args.task_name in ["punc", "lm"]:
collate_fn = CommonCollateFn(int_pad_value=0)
else:
collate_fn = CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
# dataset
dest_sample_rate = args.frontend_conf["fs"] if (
args.frontend_conf is not None and "fs" in args.frontend_conf) else 16000
if mode == "train":
@ -27,6 +37,7 @@ def build_dataloader(args, mode="train"):
dest_sample_rate=dest_sample_rate,
)
# sampler
dataset_conf = args.dataset_conf
batch_sampler = LengthBatchSampler(
batch_bins=dataset_conf["batch_size"],
@ -60,3 +71,14 @@ def build_dataloader(args, mode="train"):
f"{len(batch)} < {world_size}"
)
batches = [batch[rank::world_size] for batch in batches]
# dataloader
return SequenceIterFactory(
dataset=dataset,
batches=batches,
seed=args.seed,
shuffle=mode == "train",
num_workers=args.num_workers,
collate_fn=collate_fn,
pin_memory=args.ngpu > 0,
)

View File

@ -0,0 +1,93 @@
from typing import Collection
from typing import Dict
from typing import List
from typing import Tuple
from typing import Union
import numpy as np
import torch
from typeguard import check_argument_types
from typeguard import check_return_type
from funasr.modules.nets_utils import pad_list
class CommonCollateFn:
"""Functor class of common_collate_fn()"""
def __init__(
self,
float_pad_value: Union[float, int] = 0.0,
int_pad_value: int = -32768,
not_sequence: Collection[str] = (),
max_sample_size=None
):
assert check_argument_types()
self.float_pad_value = float_pad_value
self.int_pad_value = int_pad_value
self.not_sequence = set(not_sequence)
self.max_sample_size = max_sample_size
def __repr__(self):
return (
f"{self.__class__}(float_pad_value={self.float_pad_value}, "
f"int_pad_value={self.float_pad_value})"
)
def __call__(
self, data: Collection[Tuple[str, Dict[str, np.ndarray]]]
) -> Tuple[List[str], Dict[str, torch.Tensor]]:
return common_collate_fn(
data,
float_pad_value=self.float_pad_value,
int_pad_value=self.int_pad_value,
not_sequence=self.not_sequence,
)
def common_collate_fn(
data: Collection[Tuple[str, Dict[str, np.ndarray]]],
float_pad_value: Union[float, int] = 0.0,
int_pad_value: int = -32768,
not_sequence: Collection[str] = (),
) -> Tuple[List[str], Dict[str, torch.Tensor]]:
"""Concatenate ndarray-list to an array and convert to torch.Tensor.
"""
assert check_argument_types()
uttids = [u for u, _ in data]
data = [d for _, d in data]
assert all(set(data[0]) == set(d) for d in data), "dict-keys mismatching"
assert all(
not k.endswith("_lengths") for k in data[0]
), f"*_lengths is reserved: {list(data[0])}"
output = {}
for key in data[0]:
if data[0][key].dtype.kind == "i":
pad_value = int_pad_value
else:
pad_value = float_pad_value
array_list = [d[key] for d in data]
tensor_list = [torch.from_numpy(a) for a in array_list]
tensor = pad_list(tensor_list, pad_value)
output[key] = tensor
if key not in not_sequence:
lens = torch.tensor([d[key].shape[0] for d in data], dtype=torch.long)
output[key + "_lengths"] = lens
output = (uttids, output)
assert check_return_type(output)
return output
def crop_to_max_size(feature, target_size):
size = len(feature)
diff = size - target_size
if diff <= 0:
return feature
start = np.random.randint(0, diff + 1)
end = size - diff + start
return feature[start:end]

View File

@ -0,0 +1,189 @@
import logging
import numpy as np
import torch
from torch.utils.data import DataLoader
from funasr.datasets.small_datasets.collate_fn import CommonCollateFn
from funasr.datasets.small_datasets.dataset import ESPnetDataset
from funasr.datasets.small_datasets.length_batch_sampler import LengthBatchSampler
from funasr.datasets.small_datasets.preprocessor import build_preprocess
from funasr.iterators.abs_iter_factory import AbsIterFactory
from funasr.samplers.abs_sampler import AbsSampler
class RawSampler(AbsSampler):
def __init__(self, batches):
self.batches = batches
def __len__(self):
return len(self.batches)
def __iter__(self):
return iter(self.batches)
def generate(self, seed):
return list(self.batches)
class SequenceIterFactory(AbsIterFactory):
"""Build iterator for each epoch.
"""
def __init__(self, args, mode="train"):
# preprocess
preprocess_fn = build_preprocess(args, train=mode == "train")
# collate
if args.task_name in ["punc", "lm"]:
collate_fn = CommonCollateFn(int_pad_value=0)
else:
collate_fn = CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
# dataset
dest_sample_rate = args.frontend_conf["fs"] if (
args.frontend_conf is not None and "fs" in args.frontend_conf) else 16000
if mode == "train":
data_path_and_name_and_type = args.train_data_path_and_name_and_type
shape_files = args.train_shape_file
elif mode == "valid":
data_path_and_name_and_type = args.valid_data_path_and_name_and_type
shape_files = args.valid_shape_file
else:
raise NotImplementedError(f"mode={mode}")
dataset = ESPnetDataset(
data_path_and_name_and_type,
preprocess=preprocess_fn,
dest_sample_rate=dest_sample_rate,
)
# sampler
dataset_conf = args.dataset_conf
batch_sampler = LengthBatchSampler(
batch_bins=dataset_conf["batch_size"],
shape_files=shape_files,
sort_in_batch=dataset_conf["sort_in_batch"] if hasattr(dataset_conf, "sort_in_batch") else "descending",
sort_batch=dataset_conf["sort_batch"] if hasattr(dataset_conf, "sort_batch") else "ascending",
drop_last=False,
padding=True,
)
batches = list(batch_sampler)
bs_list = [len(batch) for batch in batches]
logging.info(f"[{mode}] dataset:\n{dataset}")
logging.info(f"[{mode}] Batch sampler: {batch_sampler}")
logging.info(
f"[{mode}] mini-batch sizes summary: N-batch={len(bs_list)}, "
f"mean={np.mean(bs_list):.1f}, min={np.min(bs_list)}, max={np.max(bs_list)}"
)
if args.scheduler == "tri_stage" and mode == "train":
args.max_update = len(bs_list) * args.max_epoch
logging.info("Max update: {}".format(args.max_update))
if args.distributed:
world_size = torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
for batch in batches:
if len(batch) < world_size:
raise RuntimeError(
f"The batch-size must be equal or more than world_size: "
f"{len(batch)} < {world_size}"
)
batches = [batch[rank::world_size] for batch in batches]
if not isinstance(batches, AbsSampler):
self.sampler = RawSampler(batches)
else:
self.sampler = batches
self.dataset = dataset
self.num_iters_per_epoch = None
self.shuffle = mode == "train"
self.seed = args.seed
self.num_workers = args.num_workers
self.collate_fn = collate_fn
self.pin_memory = args.ngpu > 0
def build_iter(self, epoch: int, shuffle: bool = None) -> DataLoader:
if shuffle is None:
shuffle = self.shuffle
if self.num_iters_per_epoch is not None:
N = len(self.sampler)
# If corpus size is larger than the num_per_epoch
if self.num_iters_per_epoch < N:
N = len(self.sampler)
real_epoch, offset = divmod(self.num_iters_per_epoch * epoch, N)
if offset >= self.num_iters_per_epoch:
current_batches = self.sampler.generate(real_epoch + self.seed)
if shuffle:
np.random.RandomState(real_epoch + self.seed).shuffle(
current_batches
)
batches = current_batches[
offset - self.num_iters_per_epoch: offset
]
else:
prev_batches = self.sampler.generate(real_epoch - 1 + self.seed)
current_batches = self.sampler.generate(real_epoch + self.seed)
if shuffle:
np.random.RandomState(real_epoch - 1 + self.seed).shuffle(
prev_batches
)
np.random.RandomState(real_epoch + self.seed).shuffle(
current_batches
)
batches = (
prev_batches[offset - self.num_iters_per_epoch:]
+ current_batches[:offset]
)
# If corpus size is less than the num_per_epoch
else:
_epoch, _cursor = divmod(self.num_iters_per_epoch * (epoch - 1), N)
_remain = self.num_iters_per_epoch
batches = []
current_batches = self.sampler.generate(_epoch + self.seed)
if shuffle:
np.random.RandomState(_epoch + self.seed).shuffle(current_batches)
while _remain > 0:
_batches = current_batches[_cursor: _cursor + _remain]
batches += _batches
if _cursor + _remain >= N:
_epoch += 1
_cursor = 0
current_batches = self.sampler.generate(_epoch + self.seed)
if shuffle:
np.random.RandomState(_epoch + self.seed).shuffle(
current_batches
)
else:
_cursor = _cursor + _remain
_remain -= len(_batches)
assert len(batches) == self.num_iters_per_epoch
else:
batches = self.sampler.generate(epoch + self.seed)
if shuffle:
np.random.RandomState(epoch + self.seed).shuffle(batches)
# For backward compatibility for pytorch DataLoader
if self.collate_fn is not None:
kwargs = dict(collate_fn=self.collate_fn)
else:
kwargs = {}
return DataLoader(
dataset=self.dataset,
batch_sampler=batches,
num_workers=self.num_workers,
pin_memory=self.pin_memory,
**kwargs,
)

View File

@ -1,9 +1,10 @@
from funasr.datasets.large_datasets.build_dataloader import LargeDataLoader
from funasr.datasets.small_datasets.build_dataloader import build_dataloader
def build_dataloader(args):
if args.dataset_type == "small":
pass
train_iter_factory = LargeDataLoader(args, mode="train")
valid_iter_factory = LargeDataLoader(args, mode="valid")
elif args.dataset_type == "large":
train_iter_factory = LargeDataLoader(args, mode="train")
valid_iter_factory = LargeDataLoader(args, mode="valid")