mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
4.7 KiB
4.7 KiB
Voice Activity Detection
Note
: The modelscope pipeline supports all the models in model zoo to inference and finetine. Here we take model of FSMN-VAD as example to demonstrate the usage.
Inference
Quick start
FSMN-VAD model
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.voice_activity_detection,
model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
)
segments_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav')
print(segments_result)
FSMN-VAD-online model
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',
)
import soundfile
speech, sample_rate = soundfile.read("example/asr_example.wav")
param_dict = {"in_cache": dict(), "is_final": False}
chunk_stride = 1600# 100ms
# first chunk, 100ms
speech_chunk = speech[0:chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
# next chunk, 480ms
speech_chunk = speech[chunk_stride:chunk_stride+chunk_stride]
rec_result = inference_pipeline(audio_in=speech_chunk, param_dict=param_dict)
print(rec_result)
Full code of demo, please ref to demo
API-reference
define pipeline
task:Tasks.auto_speech_recognitionmodel: model name in model zoo, or model path in local diskngpu: 1 (Defalut), decoding on GPU. If ngpu=0, decoding on CPUncpu: 1 (Defalut), sets the number of threads used for intraop parallelism on CPUoutput_dir: None (Defalut), the output path of results if setbatch_size: 1 (Defalut), batch size when decoding
infer pipeline
audio_in: the input to decode, which could be:- wav_path,
e.g.: asr_example.wav, - pcm_path,
e.g.: asr_example.pcm, - audio bytes stream,
e.g.: bytes data from a microphone - audio sample point,
e.g.:audio, rate = soundfile.read("asr_example_zh.wav"), the dtype is numpy.ndarray or torch.Tensor - wav.scp, kaldi style wav list (
wav_id \t wav_path``),e.g.`:
In this case ofasr_example1 ./audios/asr_example1.wav asr_example2 ./audios/asr_example2.wavwav.scpinput,output_dirmust be set to save the output results- wav_path,
audio_fs: audio sampling rate, only set when audio_in is pcm audiooutput_dir: None (Defalut), the output path of results if set
Inference with multi-thread CPUs or multi GPUs
FunASR also offer recipes infer.sh to decode with multi-thread CPUs, or multi GPUs.
-
Setting parameters in
infer.sh- model: # model name on ModelScope
- data_dir: # the dataset dir needs to include
${data_dir}/wav.scp. If${data_dir}/textis also exists, CER will be computed - output_dir: # result dir
- batch_size: # batchsize of inference
- gpu_inference: # whether to perform gpu decoding, set false for cpu decoding
- gpuid_list: # set gpus, e.g., gpuid_list="0,1"
- njob: # the number of jobs for CPU decoding, if
gpu_inference=false, use CPU decoding, please setnjob
-
Decode with multi GPUs:
bash infer.sh \
--model "damo/speech_fsmn_vad_zh-cn-16k-common-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference true \
--gpuid_list "0,1"
- Decode with multi-thread CPUs:
bash infer.sh \
--model "damo/speech_fsmn_vad_zh-cn-16k-common-pytorch" \
--data_dir "./data/test" \
--output_dir "./results" \
--gpu_inference false \
--njob 64
- Results
The decoding results can be found in $output_dir/1best_recog/text.cer, which includes recognition results of each sample and the CER metric of the whole test set.
If you decode the SpeechIO test sets, you can use textnorm with stage=3, and DETAILS.txt, RESULTS.txt record the results and CER after text normalization.