Merge pull request #687 from alibaba-damo-academy/dev_lhn

Dev lhn
This commit is contained in:
hnluo 2023-06-29 11:09:28 +08:00 committed by GitHub
commit c2dee5e3c2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 120 additions and 143 deletions

View File

@ -41,8 +41,7 @@ The decoding results can be found in `$output_dir/1best_recog/text.cer`, which i
- Modify inference related parameters in `infer_after_finetune.py`
- <strong>output_dir:</strong> # result dir
- <strong>data_dir:</strong> # the dataset dir needs to include `test/wav.scp`. If `test/text` is also exists, CER will be computed
- <strong>decoding_model_name:</strong> # set the checkpoint name for decoding, e.g., `valid.cer_ctc.ave
.pb`
- <strong>decoding_model_name:</strong> # set the checkpoint name for decoding, e.g., `valid.cer_ctc.ave.pb`
- Then you can run the pipeline to finetune with:
```python

View File

@ -0,0 +1,12 @@
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
decoding_mode="normal" #fast, normal, offline
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online',
param_dict={"decoding_model": decoding_mode}
)
rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
print(rec_result)

View File

@ -1,88 +0,0 @@
import os
import shutil
from multiprocessing import Pool
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from funasr.utils.compute_wer import compute_wer
def modelscope_infer_core(output_dir, split_dir, njob, idx):
output_dir_job = os.path.join(output_dir, "output.{}".format(idx))
gpu_id = (int(idx) - 1) // njob
if "CUDA_VISIBLE_DEVICES" in os.environ.keys():
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'].split(",")
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id])
else:
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model="damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online",
output_dir=output_dir_job,
batch_size=1
)
audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx))
inference_pipeline(audio_in=audio_in, param_dict={"decoding_model": "normal"})
def modelscope_infer(params):
# prepare for multi-GPU decoding
ngpu = params["ngpu"]
njob = params["njob"]
output_dir = params["output_dir"]
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.mkdir(output_dir)
split_dir = os.path.join(output_dir, "split")
os.mkdir(split_dir)
nj = ngpu * njob
wav_scp_file = os.path.join(params["data_dir"], "wav.scp")
with open(wav_scp_file) as f:
lines = f.readlines()
num_lines = len(lines)
num_job_lines = num_lines // nj
start = 0
for i in range(nj):
end = start + num_job_lines
file = os.path.join(split_dir, "wav.{}.scp".format(str(i + 1)))
with open(file, "w") as f:
if i == nj - 1:
f.writelines(lines[start:])
else:
f.writelines(lines[start:end])
start = end
p = Pool(nj)
for i in range(nj):
p.apply_async(modelscope_infer_core,
args=(output_dir, split_dir, njob, str(i + 1)))
p.close()
p.join()
# combine decoding results
best_recog_path = os.path.join(output_dir, "1best_recog")
os.mkdir(best_recog_path)
files = ["text", "token", "score"]
for file in files:
with open(os.path.join(best_recog_path, file), "w") as f:
for i in range(nj):
job_file = os.path.join(output_dir, "output.{}/1best_recog".format(str(i + 1)), file)
with open(job_file) as f_job:
lines = f_job.readlines()
f.writelines(lines)
# If text exists, compute CER
text_in = os.path.join(params["data_dir"], "text")
if os.path.exists(text_in):
text_proc_file = os.path.join(best_recog_path, "text")
compute_wer(text_in, text_proc_file, os.path.join(best_recog_path, "text.cer"))
if __name__ == "__main__":
params = {}
params["data_dir"] = "./data/test"
params["output_dir"] = "./results"
params["ngpu"] = 1
params["njob"] = 1
modelscope_infer(params)

View File

@ -0,0 +1 @@
../../TEMPLATE/infer.py

View File

@ -0,0 +1,105 @@
#!/usr/bin/env bash
set -e
set -u
set -o pipefail
stage=1
stop_stage=2
model="damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online"
data_dir="./data/test"
output_dir="./results"
batch_size=1
gpu_inference=false # whether to perform gpu decoding
gpuid_list="-1" # set gpus, e.g., gpuid_list="0,1"
njob=32 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob
checkpoint_dir=
checkpoint_name="valid.cer_ctc.ave.pb"
decoding_mode="normal"
. utils/parse_options.sh || exit 1;
if ${gpu_inference} == "true"; then
nj=$(echo $gpuid_list | awk -F "," '{print NF}')
else
nj=$njob
batch_size=1
gpuid_list=""
for JOB in $(seq ${nj}); do
gpuid_list=$gpuid_list"-1,"
done
fi
mkdir -p $output_dir/split
split_scps=""
for JOB in $(seq ${nj}); do
split_scps="$split_scps $output_dir/split/wav.$JOB.scp"
done
perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps}
if [ -n "${checkpoint_dir}" ]; then
python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name}
model=${checkpoint_dir}/${model}
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then
echo "Decoding ..."
gpuid_list_array=(${gpuid_list//,/ })
for JOB in $(seq ${nj}); do
{
id=$((JOB-1))
gpuid=${gpuid_list_array[$id]}
mkdir -p ${output_dir}/output.$JOB
python infer.py \
--model ${model} \
--audio_in ${output_dir}/split/wav.$JOB.scp \
--output_dir ${output_dir}/output.$JOB \
--batch_size ${batch_size} \
--gpuid ${gpuid} \
--decoding_mode ${decoding_mode}
}&
done
wait
mkdir -p ${output_dir}/1best_recog
for f in token score text; do
if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then
for i in $(seq "${nj}"); do
cat "${output_dir}/output.${i}/1best_recog/${f}"
done | sort -k1 >"${output_dir}/1best_recog/${f}"
fi
done
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then
echo "Computing WER ..."
cp ${output_dir}/1best_recog/text ${output_dir}/1best_recog/text.proc
cp ${data_dir}/text ${output_dir}/1best_recog/text.ref
python utils/compute_wer.py ${output_dir}/1best_recog/text.ref ${output_dir}/1best_recog/text.proc ${output_dir}/1best_recog/text.cer
tail -n 3 ${output_dir}/1best_recog/text.cer
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ];then
echo "SpeechIO TIOBE textnorm"
echo "$0 --> Normalizing REF text ..."
./utils/textnorm_zh.py \
--has_key --to_upper \
${data_dir}/text \
${output_dir}/1best_recog/ref.txt
echo "$0 --> Normalizing HYP text ..."
./utils/textnorm_zh.py \
--has_key --to_upper \
${output_dir}/1best_recog/text.proc \
${output_dir}/1best_recog/rec.txt
grep -v $'\t$' ${output_dir}/1best_recog/rec.txt > ${output_dir}/1best_recog/rec_non_empty.txt
echo "$0 --> computing WER/CER and alignment ..."
./utils/error_rate_zh \
--tokenizer char \
--ref ${output_dir}/1best_recog/ref.txt \
--hyp ${output_dir}/1best_recog/rec_non_empty.txt \
${output_dir}/1best_recog/DETAILS.txt | tee ${output_dir}/1best_recog/RESULTS.txt
rm -rf ${output_dir}/1best_recog/rec.txt ${output_dir}/1best_recog/rec_non_empty.txt
fi

View File

@ -1,53 +0,0 @@
import json
import os
import shutil
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from funasr.utils.compute_wer import compute_wer
def modelscope_infer_after_finetune(params):
# prepare for decoding
pretrained_model_path = os.path.join(os.environ["HOME"], ".cache/modelscope/hub", params["modelscope_model_name"])
for file_name in params["required_files"]:
if file_name == "configuration.json":
with open(os.path.join(pretrained_model_path, file_name)) as f:
config_dict = json.load(f)
config_dict["model"]["am_model_name"] = params["decoding_model_name"]
with open(os.path.join(params["output_dir"], "configuration.json"), "w") as f:
json.dump(config_dict, f, indent=4, separators=(',', ': '))
else:
shutil.copy(os.path.join(pretrained_model_path, file_name),
os.path.join(params["output_dir"], file_name))
decoding_path = os.path.join(params["output_dir"], "decode_results")
if os.path.exists(decoding_path):
shutil.rmtree(decoding_path)
os.mkdir(decoding_path)
# decoding
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model=params["output_dir"],
output_dir=decoding_path,
batch_size=1
)
audio_in = os.path.join(params["data_dir"], "wav.scp")
inference_pipeline(audio_in=audio_in, param_dict={"decoding_model": "normal"})
# computer CER if GT text is set
text_in = os.path.join(params["data_dir"], "text")
if os.path.exists(text_in):
text_proc_file = os.path.join(decoding_path, "1best_recog/text")
compute_wer(text_in, text_proc_file, os.path.join(decoding_path, "text.cer"))
if __name__ == '__main__':
params = {}
params["modelscope_model_name"] = "damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online"
params["required_files"] = ["am.mvn", "decoding.yaml", "configuration.json"]
params["output_dir"] = "./checkpoint"
params["data_dir"] = "./data/test"
params["decoding_model_name"] = "20epoch.pb"
modelscope_infer_after_finetune(params)

View File

@ -0,0 +1 @@
../../../../egs/aishell/transformer/utils