diff --git a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/README.md b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/README.md index eff933e8d..9a84f9b57 100644 --- a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/README.md +++ b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/README.md @@ -41,8 +41,7 @@ The decoding results can be found in `$output_dir/1best_recog/text.cer`, which i - Modify inference related parameters in `infer_after_finetune.py` - output_dir: # result dir - data_dir: # the dataset dir needs to include `test/wav.scp`. If `test/text` is also exists, CER will be computed - - decoding_model_name: # set the checkpoint name for decoding, e.g., `valid.cer_ctc.ave - .pb` + - decoding_model_name: # set the checkpoint name for decoding, e.g., `valid.cer_ctc.ave.pb` - Then you can run the pipeline to finetune with: ```python diff --git a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/demo.py b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/demo.py new file mode 100644 index 000000000..7ca71181b --- /dev/null +++ b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/demo.py @@ -0,0 +1,12 @@ +from modelscope.pipelines import pipeline +from modelscope.utils.constant import Tasks + +decoding_mode="normal" #fast, normal, offline +inference_pipeline = pipeline( + task=Tasks.auto_speech_recognition, + model='damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online', + param_dict={"decoding_model": decoding_mode} +) + +rec_result = inference_pipeline(audio_in='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav') +print(rec_result) diff --git a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/infer.py b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/infer.py deleted file mode 100644 index 876d51cc9..000000000 --- a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/infer.py +++ /dev/null @@ -1,88 +0,0 @@ -import os -import shutil -from multiprocessing import Pool - -from modelscope.pipelines import pipeline -from modelscope.utils.constant import Tasks - -from funasr.utils.compute_wer import compute_wer - - -def modelscope_infer_core(output_dir, split_dir, njob, idx): - output_dir_job = os.path.join(output_dir, "output.{}".format(idx)) - gpu_id = (int(idx) - 1) // njob - if "CUDA_VISIBLE_DEVICES" in os.environ.keys(): - gpu_list = os.environ['CUDA_VISIBLE_DEVICES'].split(",") - os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[gpu_id]) - else: - os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id) - inference_pipeline = pipeline( - task=Tasks.auto_speech_recognition, - model="damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online", - output_dir=output_dir_job, - batch_size=1 - ) - audio_in = os.path.join(split_dir, "wav.{}.scp".format(idx)) - inference_pipeline(audio_in=audio_in, param_dict={"decoding_model": "normal"}) - - -def modelscope_infer(params): - # prepare for multi-GPU decoding - ngpu = params["ngpu"] - njob = params["njob"] - output_dir = params["output_dir"] - if os.path.exists(output_dir): - shutil.rmtree(output_dir) - os.mkdir(output_dir) - split_dir = os.path.join(output_dir, "split") - os.mkdir(split_dir) - nj = ngpu * njob - wav_scp_file = os.path.join(params["data_dir"], "wav.scp") - with open(wav_scp_file) as f: - lines = f.readlines() - num_lines = len(lines) - num_job_lines = num_lines // nj - start = 0 - for i in range(nj): - end = start + num_job_lines - file = os.path.join(split_dir, "wav.{}.scp".format(str(i + 1))) - with open(file, "w") as f: - if i == nj - 1: - f.writelines(lines[start:]) - else: - f.writelines(lines[start:end]) - start = end - - p = Pool(nj) - for i in range(nj): - p.apply_async(modelscope_infer_core, - args=(output_dir, split_dir, njob, str(i + 1))) - p.close() - p.join() - - # combine decoding results - best_recog_path = os.path.join(output_dir, "1best_recog") - os.mkdir(best_recog_path) - files = ["text", "token", "score"] - for file in files: - with open(os.path.join(best_recog_path, file), "w") as f: - for i in range(nj): - job_file = os.path.join(output_dir, "output.{}/1best_recog".format(str(i + 1)), file) - with open(job_file) as f_job: - lines = f_job.readlines() - f.writelines(lines) - - # If text exists, compute CER - text_in = os.path.join(params["data_dir"], "text") - if os.path.exists(text_in): - text_proc_file = os.path.join(best_recog_path, "text") - compute_wer(text_in, text_proc_file, os.path.join(best_recog_path, "text.cer")) - - -if __name__ == "__main__": - params = {} - params["data_dir"] = "./data/test" - params["output_dir"] = "./results" - params["ngpu"] = 1 - params["njob"] = 1 - modelscope_infer(params) diff --git a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/infer.py b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/infer.py new file mode 120000 index 000000000..128fc31c2 --- /dev/null +++ b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/infer.py @@ -0,0 +1 @@ +../../TEMPLATE/infer.py \ No newline at end of file diff --git a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/infer.sh b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/infer.sh new file mode 100644 index 000000000..2d7a2dae9 --- /dev/null +++ b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/infer.sh @@ -0,0 +1,105 @@ +#!/usr/bin/env bash + +set -e +set -u +set -o pipefail + +stage=1 +stop_stage=2 +model="damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online" +data_dir="./data/test" +output_dir="./results" +batch_size=1 +gpu_inference=false # whether to perform gpu decoding +gpuid_list="-1" # set gpus, e.g., gpuid_list="0,1" +njob=32 # the number of jobs for CPU decoding, if gpu_inference=false, use CPU decoding, please set njob +checkpoint_dir= +checkpoint_name="valid.cer_ctc.ave.pb" +decoding_mode="normal" + +. utils/parse_options.sh || exit 1; + +if ${gpu_inference} == "true"; then + nj=$(echo $gpuid_list | awk -F "," '{print NF}') +else + nj=$njob + batch_size=1 + gpuid_list="" + for JOB in $(seq ${nj}); do + gpuid_list=$gpuid_list"-1," + done +fi + +mkdir -p $output_dir/split +split_scps="" +for JOB in $(seq ${nj}); do + split_scps="$split_scps $output_dir/split/wav.$JOB.scp" +done +perl utils/split_scp.pl ${data_dir}/wav.scp ${split_scps} + +if [ -n "${checkpoint_dir}" ]; then + python utils/prepare_checkpoint.py ${model} ${checkpoint_dir} ${checkpoint_name} + model=${checkpoint_dir}/${model} +fi + +if [ $stage -le 1 ] && [ $stop_stage -ge 1 ];then + echo "Decoding ..." + gpuid_list_array=(${gpuid_list//,/ }) + for JOB in $(seq ${nj}); do + { + id=$((JOB-1)) + gpuid=${gpuid_list_array[$id]} + mkdir -p ${output_dir}/output.$JOB + python infer.py \ + --model ${model} \ + --audio_in ${output_dir}/split/wav.$JOB.scp \ + --output_dir ${output_dir}/output.$JOB \ + --batch_size ${batch_size} \ + --gpuid ${gpuid} \ + --decoding_mode ${decoding_mode} + }& + done + wait + + mkdir -p ${output_dir}/1best_recog + for f in token score text; do + if [ -f "${output_dir}/output.1/1best_recog/${f}" ]; then + for i in $(seq "${nj}"); do + cat "${output_dir}/output.${i}/1best_recog/${f}" + done | sort -k1 >"${output_dir}/1best_recog/${f}" + fi + done +fi + +if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then + echo "Computing WER ..." + cp ${output_dir}/1best_recog/text ${output_dir}/1best_recog/text.proc + cp ${data_dir}/text ${output_dir}/1best_recog/text.ref + python utils/compute_wer.py ${output_dir}/1best_recog/text.ref ${output_dir}/1best_recog/text.proc ${output_dir}/1best_recog/text.cer + tail -n 3 ${output_dir}/1best_recog/text.cer +fi + +if [ $stage -le 3 ] && [ $stop_stage -ge 3 ];then + echo "SpeechIO TIOBE textnorm" + echo "$0 --> Normalizing REF text ..." + ./utils/textnorm_zh.py \ + --has_key --to_upper \ + ${data_dir}/text \ + ${output_dir}/1best_recog/ref.txt + + echo "$0 --> Normalizing HYP text ..." + ./utils/textnorm_zh.py \ + --has_key --to_upper \ + ${output_dir}/1best_recog/text.proc \ + ${output_dir}/1best_recog/rec.txt + grep -v $'\t$' ${output_dir}/1best_recog/rec.txt > ${output_dir}/1best_recog/rec_non_empty.txt + + echo "$0 --> computing WER/CER and alignment ..." + ./utils/error_rate_zh \ + --tokenizer char \ + --ref ${output_dir}/1best_recog/ref.txt \ + --hyp ${output_dir}/1best_recog/rec_non_empty.txt \ + ${output_dir}/1best_recog/DETAILS.txt | tee ${output_dir}/1best_recog/RESULTS.txt + rm -rf ${output_dir}/1best_recog/rec.txt ${output_dir}/1best_recog/rec_non_empty.txt +fi + diff --git a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/infer_after_finetune.py b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/infer_after_finetune.py deleted file mode 100644 index fd124ffcc..000000000 --- a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/infer_after_finetune.py +++ /dev/null @@ -1,53 +0,0 @@ -import json -import os -import shutil - -from modelscope.pipelines import pipeline -from modelscope.utils.constant import Tasks - -from funasr.utils.compute_wer import compute_wer - - -def modelscope_infer_after_finetune(params): - # prepare for decoding - pretrained_model_path = os.path.join(os.environ["HOME"], ".cache/modelscope/hub", params["modelscope_model_name"]) - for file_name in params["required_files"]: - if file_name == "configuration.json": - with open(os.path.join(pretrained_model_path, file_name)) as f: - config_dict = json.load(f) - config_dict["model"]["am_model_name"] = params["decoding_model_name"] - with open(os.path.join(params["output_dir"], "configuration.json"), "w") as f: - json.dump(config_dict, f, indent=4, separators=(',', ': ')) - else: - shutil.copy(os.path.join(pretrained_model_path, file_name), - os.path.join(params["output_dir"], file_name)) - decoding_path = os.path.join(params["output_dir"], "decode_results") - if os.path.exists(decoding_path): - shutil.rmtree(decoding_path) - os.mkdir(decoding_path) - - # decoding - inference_pipeline = pipeline( - task=Tasks.auto_speech_recognition, - model=params["output_dir"], - output_dir=decoding_path, - batch_size=1 - ) - audio_in = os.path.join(params["data_dir"], "wav.scp") - inference_pipeline(audio_in=audio_in, param_dict={"decoding_model": "normal"}) - - # computer CER if GT text is set - text_in = os.path.join(params["data_dir"], "text") - if os.path.exists(text_in): - text_proc_file = os.path.join(decoding_path, "1best_recog/text") - compute_wer(text_in, text_proc_file, os.path.join(decoding_path, "text.cer")) - - -if __name__ == '__main__': - params = {} - params["modelscope_model_name"] = "damo/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online" - params["required_files"] = ["am.mvn", "decoding.yaml", "configuration.json"] - params["output_dir"] = "./checkpoint" - params["data_dir"] = "./data/test" - params["decoding_model_name"] = "20epoch.pb" - modelscope_infer_after_finetune(params) diff --git a/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/utils b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/utils new file mode 120000 index 000000000..2ac163ff4 --- /dev/null +++ b/egs_modelscope/asr/uniasr/speech_UniASR_asr_2pass-zh-cn-8k-common-vocab3445-pytorch-online/utils @@ -0,0 +1 @@ +../../../../egs/aishell/transformer/utils \ No newline at end of file