mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
update
This commit is contained in:
parent
cc47491099
commit
abf5af40e9
@ -31,4 +31,6 @@ def import_submodules(package, recursive=True):
|
|||||||
import_submodules(__name__)
|
import_submodules(__name__)
|
||||||
|
|
||||||
from funasr.auto.auto_model import AutoModel
|
from funasr.auto.auto_model import AutoModel
|
||||||
from funasr.auto.auto_frontend import AutoFrontend
|
from funasr.auto.auto_frontend import AutoFrontend
|
||||||
|
|
||||||
|
os.environ["HYDRA_FULL_ERROR"] = 1
|
||||||
@ -51,13 +51,20 @@ def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs:
|
|||||||
|
|
||||||
if isinstance(data_or_path_or_list, str) and os.path.exists(data_or_path_or_list): # local file
|
if isinstance(data_or_path_or_list, str) and os.path.exists(data_or_path_or_list): # local file
|
||||||
if data_type is None or data_type == "sound":
|
if data_type is None or data_type == "sound":
|
||||||
if use_ffmpeg:
|
# if use_ffmpeg:
|
||||||
data_or_path_or_list = _load_audio_ffmpeg(data_or_path_or_list, sr=fs)
|
# data_or_path_or_list = _load_audio_ffmpeg(data_or_path_or_list, sr=fs)
|
||||||
data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,]
|
# data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,]
|
||||||
else:
|
# else:
|
||||||
|
# data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
|
||||||
|
# if kwargs.get("reduce_channels", True):
|
||||||
|
# data_or_path_or_list = data_or_path_or_list.mean(0)
|
||||||
|
try:
|
||||||
data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
|
data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
|
||||||
if kwargs.get("reduce_channels", True):
|
if kwargs.get("reduce_channels", True):
|
||||||
data_or_path_or_list = data_or_path_or_list.mean(0)
|
data_or_path_or_list = data_or_path_or_list.mean(0)
|
||||||
|
except:
|
||||||
|
data_or_path_or_list = _load_audio_ffmpeg(data_or_path_or_list, sr=fs)
|
||||||
|
data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,]
|
||||||
elif data_type == "text" and tokenizer is not None:
|
elif data_type == "text" and tokenizer is not None:
|
||||||
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
|
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
|
||||||
elif data_type == "image": # undo
|
elif data_type == "image": # undo
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user