diff --git a/funasr/__init__.py b/funasr/__init__.py index a5011bf79..950c18e80 100644 --- a/funasr/__init__.py +++ b/funasr/__init__.py @@ -31,4 +31,6 @@ def import_submodules(package, recursive=True): import_submodules(__name__) from funasr.auto.auto_model import AutoModel -from funasr.auto.auto_frontend import AutoFrontend \ No newline at end of file +from funasr.auto.auto_frontend import AutoFrontend + +os.environ["HYDRA_FULL_ERROR"] = 1 \ No newline at end of file diff --git a/funasr/utils/load_utils.py b/funasr/utils/load_utils.py index 6f12f55a5..8ff7115a1 100644 --- a/funasr/utils/load_utils.py +++ b/funasr/utils/load_utils.py @@ -51,13 +51,20 @@ def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs: if isinstance(data_or_path_or_list, str) and os.path.exists(data_or_path_or_list): # local file if data_type is None or data_type == "sound": - if use_ffmpeg: - data_or_path_or_list = _load_audio_ffmpeg(data_or_path_or_list, sr=fs) - data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,] - else: + # if use_ffmpeg: + # data_or_path_or_list = _load_audio_ffmpeg(data_or_path_or_list, sr=fs) + # data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,] + # else: + # data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list) + # if kwargs.get("reduce_channels", True): + # data_or_path_or_list = data_or_path_or_list.mean(0) + try: data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list) if kwargs.get("reduce_channels", True): data_or_path_or_list = data_or_path_or_list.mean(0) + except: + data_or_path_or_list = _load_audio_ffmpeg(data_or_path_or_list, sr=fs) + data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,] elif data_type == "text" and tokenizer is not None: data_or_path_or_list = tokenizer.encode(data_or_path_or_list) elif data_type == "image": # undo