rename register tables

This commit is contained in:
游雁 2023-12-21 14:20:21 +08:00
parent f920ca6298
commit a1b0cd33d5
50 changed files with 276 additions and 209 deletions

View File

@ -2,13 +2,13 @@
cmd="funasr/bin/inference.py"
python $cmd \
+model="/Users/zhifu/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
+model="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
+input="/Users/zhifu/Downloads/asr_example.wav" \
+output_dir="/Users/zhifu/Downloads/ckpt/funasr2/exp2" \
+device="cpu" \
python $cmd \
+model="/Users/zhifu/modelscope_models/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404" \
+model="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404" \
+input="/Users/zhifu/Downloads/asr_example.wav" \
+output_dir="/Users/zhifu/Downloads/ckpt/funasr2/exp2" \
+device="cpu" \

View File

@ -15,7 +15,7 @@ from funasr.train_utils.load_pretrained_model import load_pretrained_model
import time
import random
import string
from funasr.utils.register import registry_tables
from funasr.register import tables
def build_iter_for_infer(data_in, input_len=None, data_type="sound"):
@ -81,7 +81,7 @@ def main_hydra(kwargs: DictConfig):
class AutoModel:
def __init__(self, **kwargs):
registry_tables.print()
tables.print()
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms")))
@ -98,7 +98,7 @@ class AutoModel:
# build tokenizer
tokenizer = kwargs.get("tokenizer", None)
if tokenizer is not None:
tokenizer_class = registry_tables.tokenizer_classes.get(tokenizer.lower())
tokenizer_class = tables.tokenizer_classes.get(tokenizer.lower())
tokenizer = tokenizer_class(**kwargs["tokenizer_conf"])
kwargs["tokenizer"] = tokenizer
kwargs["token_list"] = tokenizer.token_list
@ -106,13 +106,13 @@ class AutoModel:
# build frontend
frontend = kwargs.get("frontend", None)
if frontend is not None:
frontend_class = registry_tables.frontend_classes.get(frontend.lower())
frontend_class = tables.frontend_classes.get(frontend.lower())
frontend = frontend_class(**kwargs["frontend_conf"])
kwargs["frontend"] = frontend
kwargs["input_size"] = frontend.output_size()
# build model
model_class = registry_tables.model_classes.get(kwargs["model"].lower())
model_class = tables.model_classes.get(kwargs["model"].lower())
model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=len(tokenizer.token_list) if tokenizer is not None else -1)
model.eval()
model.to(device)

View File

@ -21,7 +21,7 @@ import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from funasr.download.download_from_hub import download_model
from funasr.utils.register import registry_tables
from funasr.register import tables
@hydra.main(config_name=None, version_base=None)
def main_hydra(kwargs: DictConfig):
@ -39,7 +39,7 @@ def main(**kwargs):
# preprocess_config(kwargs)
# import pdb; pdb.set_trace()
# set random seed
registry_tables.print()
tables.print()
set_all_random_seed(kwargs.get("seed", 0))
torch.backends.cudnn.enabled = kwargs.get("cudnn_enabled", torch.backends.cudnn.enabled)
torch.backends.cudnn.benchmark = kwargs.get("cudnn_benchmark", torch.backends.cudnn.benchmark)
@ -62,14 +62,14 @@ def main(**kwargs):
tokenizer = kwargs.get("tokenizer", None)
if tokenizer is not None:
tokenizer_class = registry_tables.tokenizer_classes.get(tokenizer.lower())
tokenizer_class = tables.tokenizer_classes.get(tokenizer.lower())
tokenizer = tokenizer_class(**kwargs["tokenizer_conf"])
kwargs["tokenizer"] = tokenizer
# build frontend if frontend is none None
frontend = kwargs.get("frontend", None)
if frontend is not None:
frontend_class = registry_tables.frontend_classes.get(frontend.lower())
frontend_class = tables.frontend_classes.get(frontend.lower())
frontend = frontend_class(**kwargs["frontend_conf"])
kwargs["frontend"] = frontend
kwargs["input_size"] = frontend.output_size()
@ -77,7 +77,7 @@ def main(**kwargs):
# import pdb;
# pdb.set_trace()
# build model
model_class = registry_tables.model_classes.get(kwargs["model"].lower())
model_class = tables.model_classes.get(kwargs["model"].lower())
model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=len(tokenizer.token_list))
@ -139,12 +139,12 @@ def main(**kwargs):
# import pdb;
# pdb.set_trace()
# dataset
dataset_class = registry_tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset").lower())
dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset").lower())
dataset_tr = dataset_class(kwargs.get("train_data_set_list"), frontend=frontend, tokenizer=tokenizer, **kwargs.get("dataset_conf"))
# dataloader
batch_sampler = kwargs["dataset_conf"].get("batch_sampler", "DynamicBatchLocalShuffleSampler")
batch_sampler_class = registry_tables.batch_sampler_classes.get(batch_sampler.lower())
batch_sampler_class = tables.batch_sampler_classes.get(batch_sampler.lower())
if batch_sampler is not None:
batch_sampler = batch_sampler_class(dataset_tr, **kwargs.get("dataset_conf"))
dataloader_tr = torch.utils.data.DataLoader(dataset_tr,

View File

@ -9,9 +9,9 @@ import time
import logging
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio, extract_fbank
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
@register_class("dataset_classes", "AudioDataset")
@tables.register("dataset_classes", "AudioDataset")
class AudioDataset(torch.utils.data.Dataset):
def __init__(self,
path,
@ -22,16 +22,16 @@ class AudioDataset(torch.utils.data.Dataset):
float_pad_value: float = 0.0,
**kwargs):
super().__init__()
index_ds_class = registry_tables.index_ds_classes.get(index_ds.lower())
index_ds_class = tables.index_ds_classes.get(index_ds.lower())
self.index_ds = index_ds_class(path)
preprocessor_speech = kwargs.get("preprocessor_speech", None)
if preprocessor_speech:
preprocessor_speech_class = registry_tables.preprocessor_speech_classes.get(preprocessor_speech.lower())
preprocessor_speech_class = tables.preprocessor_speech_classes.get(preprocessor_speech.lower())
preprocessor_speech = preprocessor_speech_class(**kwargs.get("preprocessor_speech_conf"))
self.preprocessor_speech = preprocessor_speech
preprocessor_text = kwargs.get("preprocessor_text", None)
if preprocessor_text:
preprocessor_text_class = registry_tables.preprocessor_text_classes.get(preprocessor_text.lower())
preprocessor_text_class = tables.preprocessor_text_classes.get(preprocessor_text.lower())
preprocessor_text = preprocessor_text_class(**kwargs.get("preprocessor_text_conf"))
self.preprocessor_text = preprocessor_text

View File

@ -4,9 +4,9 @@ import torch.distributed as dist
import time
import logging
from funasr.utils.register import register_class
from funasr.register import tables
@register_class("index_ds_classes", "IndexDSJsonl")
@tables.register("index_ds_classes", "IndexDSJsonl")
class IndexDSJsonl(torch.utils.data.Dataset):
def __init__(self, path):

View File

@ -2,9 +2,9 @@ import torch
import numpy as np
from funasr.utils.register import register_class
from funasr.register import tables
@register_class("batch_sampler_classes", "DynamicBatchLocalShuffleSampler")
@tables.register("batch_sampler_classes", "DynamicBatchLocalShuffleSampler")
class BatchSampler(torch.utils.data.BatchSampler):
def __init__(self, dataset,

View File

@ -9,7 +9,7 @@ import torchaudio.compliance.kaldi as kaldi
from torch.nn.utils.rnn import pad_sequence
import funasr.frontends.eend_ola_feature as eend_ola_feature
from funasr.utils.register import register_class
from funasr.register import tables
@ -75,7 +75,7 @@ def apply_lfr(inputs, lfr_m, lfr_n):
LFR_outputs = torch.vstack(LFR_inputs)
return LFR_outputs.type(torch.float32)
@register_class("frontend_classes", "WavFrontend")
@tables.register("frontend_classes", "WavFrontend")
class WavFrontend(nn.Module):
"""Conventional frontend structure for ASR.
"""
@ -211,7 +211,7 @@ class WavFrontend(nn.Module):
return feats_pad, feats_lens
@register_class("frontend_classes", "WavFrontendOnline")
@tables.register("frontend_classes", "WavFrontendOnline")
class WavFrontendOnline(nn.Module):
"""Conventional frontend structure for streaming ASR/VAD.
"""

View File

@ -8,7 +8,7 @@
# from funasr.models.scama.utils import sequence_mask
# from typing import Optional, Tuple
#
# from funasr.utils.register import register_class
# from funasr.register import tables
#
# class mae_loss(nn.Module):
#
@ -93,7 +93,7 @@
# fires = torch.stack(list_fires, 1)
# return fires
#
# @register_class("predictor_classes", "BATPredictor")
# @tables.register("predictor_classes", "BATPredictor")
# class BATPredictor(nn.Module):
# def __init__(self, idim, l_order, r_order, threshold=1.0, dropout=0.1, smooth_factor=1.0, noise_threshold=0, return_accum=False):
# super(BATPredictor, self).__init__()

View File

@ -29,7 +29,7 @@ from funasr.models.transformer.utils.repeat import repeat, MultiBlocks
from funasr.models.transformer.utils.subsampling import TooShortUttError
from funasr.models.transformer.utils.subsampling import check_short_utt
from funasr.models.transformer.utils.subsampling import StreamingConvInput
from funasr.utils.register import register_class
from funasr.register import tables
@ -312,7 +312,7 @@ class CausalConvolution(nn.Module):
return x, cache
@register_class("encoder_classes", "ConformerChunkEncoder")
@tables.register("encoder_classes", "ConformerChunkEncoder")
class ConformerChunkEncoder(nn.Module):
"""Encoder module definition.
Args:

View File

@ -8,7 +8,7 @@ from funasr.models.transformer.utils.nets_utils import make_pad_mask
from funasr.models.scama.utils import sequence_mask
from typing import Optional, Tuple
from funasr.utils.register import register_class
from funasr.register import tables
class mae_loss(nn.Module):
@ -94,7 +94,7 @@ def cif_wo_hidden(alphas, threshold):
fires = torch.stack(list_fires, 1)
return fires
@register_class("predictor_classes", "CifPredictorV3")
@tables.register("predictor_classes", "CifPredictorV3")
class CifPredictorV3(nn.Module):
def __init__(self,
idim,

View File

@ -27,12 +27,12 @@ from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio,
from funasr.utils import postprocess_utils
from funasr.utils.datadir_writer import DatadirWriter
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
from funasr.models.ctc.ctc import CTC
from funasr.models.paraformer.model import Paraformer
@register_class("model_classes", "BiCifParaformer")
@tables.register("model_classes", "BiCifParaformer")
class BiCifParaformer(Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group

View File

@ -43,7 +43,7 @@ from funasr.models.transformer.utils.subsampling import (
check_short_utt,
)
from funasr.utils.register import register_class
from funasr.register import tables
class BranchformerEncoderLayer(torch.nn.Module):
"""Branchformer encoder layer module.
@ -291,7 +291,7 @@ class BranchformerEncoderLayer(torch.nn.Module):
return x, mask
@register_class("encoder_classes", "BranchformerEncoder")
@tables.register("encoder_classes", "BranchformerEncoder")
class BranchformerEncoder(nn.Module):
"""Branchformer encoder module."""

View File

@ -1,9 +1,9 @@
import logging
from funasr.models.transformer.model import Transformer
from funasr.utils.register import register_class
from funasr.register import tables
@register_class("model_classes", "Branchformer")
@tables.register("model_classes", "Branchformer")
class Branchformer(Transformer):
"""CTC-attention hybrid Encoder-Decoder model"""

View File

@ -45,7 +45,7 @@ from funasr.models.transformer.utils.subsampling import TooShortUttError
from funasr.models.transformer.utils.subsampling import check_short_utt
from funasr.models.transformer.utils.subsampling import Conv2dSubsamplingPad
from funasr.models.transformer.utils.subsampling import StreamingConvInput
from funasr.utils.register import register_class
from funasr.register import tables
class ConvolutionModule(nn.Module):
@ -283,7 +283,7 @@ class EncoderLayer(nn.Module):
return x, mask
@register_class("encoder_classes", "ConformerEncoder")
@tables.register("encoder_classes", "ConformerEncoder")
class ConformerEncoder(nn.Module):
"""Conformer encoder module.

View File

@ -3,9 +3,9 @@ import logging
import torch
from funasr.models.transformer.model import Transformer
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
@register_class("model_classes", "Conformer")
@tables.register("model_classes", "Conformer")
class Conformer(Transformer):
"""CTC-attention hybrid Encoder-Decoder model"""

View File

@ -2,8 +2,8 @@
# You can modify the configuration according to your own requirements.
# to print the register_table:
# from funasr.utils.register import registry_tables
# registry_tables.print()
# from funasr.register import tables
# tables.print()
# network architecture
#model: funasr.models.paraformer.model:Paraformer

View File

@ -31,7 +31,7 @@ from funasr.models.transformer.utils.mask import subsequent_mask, vad_mask
from funasr.models.ctc.ctc import CTC
from funasr.utils.register import register_class
from funasr.register import tables
class EncoderLayerSANM(nn.Module):
def __init__(
@ -155,7 +155,7 @@ class EncoderLayerSANM(nn.Module):
return x, cache
@register_class("encoder_classes", "SANMVadEncoder")
@tables.register("encoder_classes", "SANMVadEncoder")
class SANMVadEncoder(nn.Module):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group

View File

@ -5,9 +5,9 @@ from typing import Tuple
import torch
import torch.nn as nn
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
@register_class("model_classes", "CTTransformer")
@tables.register("model_classes", "CTTransformer")
class CTTransformer(nn.Module):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
@ -37,7 +37,7 @@ class CTTransformer(nn.Module):
self.embed = nn.Embedding(vocab_size, embed_unit)
encoder_class = registry_tables.encoder_classes.get(encoder.lower())
encoder_class = tables.encoder_classes.get(encoder.lower())
encoder = encoder_class(**encoder_conf)
self.decoder = nn.Linear(att_unit, punc_size)

View File

@ -42,7 +42,7 @@ from funasr.models.transformer.utils.subsampling import (
TooShortUttError,
check_short_utt,
)
from funasr.utils.register import register_class
from funasr.register import tables
class EBranchformerEncoderLayer(torch.nn.Module):
"""E-Branchformer encoder layer module.
@ -174,7 +174,7 @@ class EBranchformerEncoderLayer(torch.nn.Module):
return x, mask
@register_class("encoder_classes", "EBranchformerEncoder")
@tables.register("encoder_classes", "EBranchformerEncoder")
class EBranchformerEncoder(nn.Module):
"""E-Branchformer encoder module."""

View File

@ -1,9 +1,9 @@
import logging
from funasr.models.transformer.model import Transformer
from funasr.utils.register import register_class
from funasr.register import tables
@register_class("model_classes", "EBranchformer")
@tables.register("model_classes", "EBranchformer")
class EBranchformer(Transformer):
"""CTC-attention hybrid Encoder-Decoder model"""

View File

@ -6,7 +6,7 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
class LinearTransform(nn.Module):
@ -158,7 +158,7 @@ num_syn: output dimension
fsmn_layers: no. of sequential fsmn layers
'''
@register_class("encoder_classes", "FSMN")
@tables.register("encoder_classes", "FSMN")
class FSMN(nn.Module):
def __init__(
self,
@ -229,7 +229,7 @@ lstride: left stride
rstride: right stride
'''
@register_class("encoder_classes", "DFSMN")
@tables.register("encoder_classes", "DFSMN")
class DFSMN(nn.Module):
def __init__(self, dimproj=64, dimlinear=128, lorder=20, rorder=1, lstride=1, rstride=1):

View File

@ -8,7 +8,7 @@ from torch import nn
import math
from typing import Optional
import time
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio,extract_fbank
from funasr.utils.datadir_writer import DatadirWriter
from torch.nn.utils.rnn import pad_sequence
@ -218,7 +218,7 @@ class WindowDetector(object):
return int(self.frame_size_ms)
@register_class("model_classes", "FsmnVAD")
@tables.register("model_classes", "FsmnVAD")
class FsmnVAD(nn.Module):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
@ -238,7 +238,7 @@ class FsmnVAD(nn.Module):
self.vad_opts.speech_to_sil_time_thres,
self.vad_opts.frame_in_ms)
encoder_class = registry_tables.encoder_classes.get(encoder.lower())
encoder_class = tables.encoder_classes.get(encoder.lower())
encoder = encoder_class(**encoder_conf)
self.encoder = encoder
# init variables

View File

@ -0,0 +1,62 @@
# This is an example that demonstrates how to configure a model file.
# You can modify the configuration according to your own requirements.
# to print the register_table:
# from funasr.register import tables
# tables.print()
# network architecture
model: FsmnVAD
model_conf:
sample_rate: 16000
detect_mode: 1
snr_mode: 0
max_end_silence_time: 800
max_start_silence_time: 3000
do_start_point_detection: True
do_end_point_detection: True
window_size_ms: 200
sil_to_speech_time_thres: 150
speech_to_sil_time_thres: 150
speech_2_noise_ratio: 1.0
do_extend: 1
lookback_time_start_point: 200
lookahead_time_end_point: 100
max_single_segment_time: 60000
snr_thres: -100.0
noise_frame_num_used_for_snr: 100
decibel_thres: -100.0
speech_noise_thres: 0.6
fe_prior_thres: 0.0001
silence_pdf_num: 1
sil_pdf_ids: [0]
speech_noise_thresh_low: -0.1
speech_noise_thresh_high: 0.3
output_frame_probs: False
frame_in_ms: 10
frame_length_ms: 25
encoder: FSMN
encoder_conf:
input_dim: 400
input_affine_dim: 140
fsmn_layers: 4
linear_dim: 250
proj_dim: 128
lorder: 20
rorder: 0
lstride: 1
rstride: 0
output_affine_dim: 140
output_dim: 248
frontend: WavFrontend
frontend_conf:
fs: 16000
window: hamming
n_mels: 80
frame_length: 25
frame_shift: 10
dither: 0.0
lfr_m: 5
lfr_n: 1

View File

@ -14,7 +14,7 @@ from funasr.models.sanm.positionwise_feed_forward import PositionwiseFeedForward
from funasr.models.transformer.utils.repeat import repeat
from funasr.models.paraformer.decoder import DecoderLayerSANM, ParaformerSANMDecoder
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
class ContextualDecoderLayer(nn.Module):
def __init__(
@ -98,7 +98,7 @@ class ContextualBiasDecoder(nn.Module):
x = self.dropout(self.src_attn(x, memory, memory_mask))
return x, tgt_mask, memory, memory_mask, cache
@register_class("decoder_classes", "ContextualParaformerDecoder")
@tables.register("decoder_classes", "ContextualParaformerDecoder")
class ContextualParaformerDecoder(ParaformerSANMDecoder):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group

View File

@ -53,9 +53,9 @@ from funasr.utils.datadir_writer import DatadirWriter
from funasr.models.paraformer.model import Paraformer
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
@register_class("model_classes", "NeatContextualParaformer")
@tables.register("model_classes", "NeatContextualParaformer")
class NeatContextualParaformer(Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group

View File

@ -2,8 +2,8 @@
# You can modify the configuration according to your own requirements.
# to print the register_table:
# from funasr.utils.register import registry_tables
# registry_tables.print()
# from funasr.register import tables
# tables.print()
# network architecture
model: NeatContextualParaformer

View File

@ -6,9 +6,9 @@ import numpy as np
import torch
from funasr.models.transformer.utils.nets_utils import make_pad_mask
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
@register_class("normalize_classes", "GlobalMVN")
@tables.register("normalize_classes", "GlobalMVN")
class GlobalMVN(torch.nn.Module):
"""Apply global mean and variance normalization
TODO(kamo): Make this class portable somehow

View File

@ -3,9 +3,9 @@ from typing import Tuple
import torch
from funasr.models.transformer.utils.nets_utils import make_pad_mask
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
@register_class("normalize_classes", "UtteranceMVN")
@tables.register("normalize_classes", "UtteranceMVN")
class UtteranceMVN(torch.nn.Module):
def __init__(
self,

View File

@ -8,9 +8,9 @@ from funasr.models.transformer.utils.nets_utils import make_pad_mask
from funasr.models.scama.utils import sequence_mask
from typing import Optional, Tuple
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
@register_class("predictor_classes", "CifPredictor")
@tables.register("predictor_classes", "CifPredictor")
class CifPredictor(nn.Module):
def __init__(self, idim, l_order, r_order, threshold=1.0, dropout=0.1, smooth_factor=1.0, noise_threshold=0, tail_threshold=0.45):
super().__init__()
@ -136,7 +136,7 @@ class CifPredictor(nn.Module):
predictor_alignments_length = predictor_alignments.sum(-1).type(encoder_sequence_length.dtype)
return predictor_alignments.detach(), predictor_alignments_length.detach()
@register_class("predictor_classes", "CifPredictorV2")
@tables.register("predictor_classes", "CifPredictorV2")
class CifPredictorV2(nn.Module):
def __init__(self,
idim,

View File

@ -17,7 +17,7 @@ from funasr.models.transformer.attention import MultiHeadedAttention
from funasr.models.transformer.embedding import PositionalEncoding
from funasr.models.transformer.utils.nets_utils import make_pad_mask
from funasr.models.transformer.positionwise_feed_forward import PositionwiseFeedForward
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
class DecoderLayerSANM(nn.Module):
"""Single decoder layer module.
@ -200,7 +200,7 @@ class DecoderLayerSANM(nn.Module):
return x, memory, fsmn_cache, opt_cache
@register_class("decoder_classes", "ParaformerSANMDecoder")
@tables.register("decoder_classes", "ParaformerSANMDecoder")
class ParaformerSANMDecoder(BaseTransformerDecoder):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
@ -525,7 +525,7 @@ class ParaformerSANMDecoder(BaseTransformerDecoder):
return y, new_cache
@register_class("decoder_classes", "ParaformerDecoderSAN")
@tables.register("decoder_classes", "ParaformerDecoderSAN")
class ParaformerDecoderSAN(BaseTransformerDecoder):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group

View File

@ -25,10 +25,10 @@ from torch.cuda.amp import autocast
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio, extract_fbank
from funasr.utils import postprocess_utils
from funasr.utils.datadir_writer import DatadirWriter
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
from funasr.models.ctc.ctc import CTC
@register_class("model_classes", "Paraformer")
@tables.register("model_classes", "Paraformer")
class Paraformer(nn.Module):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
@ -79,17 +79,17 @@ class Paraformer(nn.Module):
super().__init__()
if specaug is not None:
specaug_class = registry_tables.specaug_classes.get(specaug.lower())
specaug_class = tables.specaug_classes.get(specaug.lower())
specaug = specaug_class(**specaug_conf)
if normalize is not None:
normalize_class = registry_tables.normalize_classes.get(normalize.lower())
normalize_class = tables.normalize_classes.get(normalize.lower())
normalize = normalize_class(**normalize_conf)
encoder_class = registry_tables.encoder_classes.get(encoder.lower())
encoder_class = tables.encoder_classes.get(encoder.lower())
encoder = encoder_class(input_size=input_size, **encoder_conf)
encoder_output_size = encoder.output_size()
if decoder is not None:
decoder_class = registry_tables.decoder_classes.get(decoder.lower())
decoder_class = tables.decoder_classes.get(decoder.lower())
decoder = decoder_class(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
@ -104,7 +104,7 @@ class Paraformer(nn.Module):
odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf
)
if predictor is not None:
predictor_class = registry_tables.predictor_classes.get(predictor.lower())
predictor_class = tables.predictor_classes.get(predictor.lower())
predictor = predictor_class(**predictor_conf)
# note that eos is the same as sos (equivalent ID)

View File

@ -2,8 +2,8 @@
# You can modify the configuration according to your own requirements.
# to print the register_table:
# from funasr.utils.register import registry_tables
# registry_tables.print()
# from funasr.register import tables
# tables.print()
# network architecture
#model: funasr.models.paraformer.model:Paraformer

View File

@ -44,7 +44,7 @@ from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio,
from funasr.utils import postprocess_utils
from funasr.utils.datadir_writer import DatadirWriter
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
from funasr.utils.register import registry_tables
from funasr.register import tables
from funasr.models.ctc.ctc import CTC
class Paraformer(nn.Module):
@ -102,19 +102,19 @@ class Paraformer(nn.Module):
# pdb.set_trace()
if frontend is not None:
frontend_class = registry_tables.frontend_classes.get_class(frontend.lower())
frontend_class = tables.frontend_classes.get_class(frontend.lower())
frontend = frontend_class(**frontend_conf)
if specaug is not None:
specaug_class = registry_tables.specaug_classes.get_class(specaug.lower())
specaug_class = tables.specaug_classes.get_class(specaug.lower())
specaug = specaug_class(**specaug_conf)
if normalize is not None:
normalize_class = registry_tables.normalize_classes.get_class(normalize.lower())
normalize_class = tables.normalize_classes.get_class(normalize.lower())
normalize = normalize_class(**normalize_conf)
encoder_class = registry_tables.encoder_classes.get_class(encoder.lower())
encoder_class = tables.encoder_classes.get_class(encoder.lower())
encoder = encoder_class(input_size=input_size, **encoder_conf)
encoder_output_size = encoder.output_size()
if decoder is not None:
decoder_class = registry_tables.decoder_classes.get_class(decoder.lower())
decoder_class = tables.decoder_classes.get_class(decoder.lower())
decoder = decoder_class(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
@ -129,7 +129,7 @@ class Paraformer(nn.Module):
odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf
)
if predictor is not None:
predictor_class = registry_tables.predictor_classes.get_class(predictor.lower())
predictor_class = tables.predictor_classes.get_class(predictor.lower())
predictor = predictor_class(**predictor_conf)
# note that eos is the same as sos (equivalent ID)

View File

@ -14,7 +14,7 @@ from funasr.models.transformer.layer_norm import LayerNorm
from funasr.models.sanm.positionwise_feed_forward import PositionwiseFeedForwardDecoderSANM
from funasr.models.transformer.utils.repeat import repeat
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
class DecoderLayerSANM(nn.Module):
"""Single decoder layer module.
@ -190,7 +190,7 @@ class DecoderLayerSANM(nn.Module):
return x, memory, fsmn_cache, opt_cache
@register_class("decoder_classes", "ParaformerSANMDecoder")
@tables.register("decoder_classes", "ParaformerSANMDecoder")
class ParaformerSANMDecoder(BaseTransformerDecoder):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group

View File

@ -27,7 +27,7 @@ from funasr.models.transformer.positionwise_feed_forward import (
from funasr.models.transformer.utils.repeat import repeat
from funasr.models.transformer.scorers.scorer_interface import BatchScorerInterface
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
class DecoderLayer(nn.Module):
"""Single decoder layer module.
@ -353,7 +353,7 @@ class BaseTransformerDecoder(nn.Module, BatchScorerInterface):
state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)]
return logp, state_list
@register_class("decoder_classes", "TransformerDecoder")
@tables.register("decoder_classes", "TransformerDecoder")
class TransformerDecoder(BaseTransformerDecoder):
def __init__(
self,
@ -402,7 +402,7 @@ class TransformerDecoder(BaseTransformerDecoder):
)
@register_class("decoder_classes", "ParaformerDecoderSAN")
@tables.register("decoder_classes", "ParaformerDecoderSAN")
class ParaformerDecoderSAN(BaseTransformerDecoder):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
@ -516,7 +516,7 @@ class ParaformerDecoderSAN(BaseTransformerDecoder):
else:
return x, olens
@register_class("decoder_classes", "LightweightConvolutionTransformerDecoder")
@tables.register("decoder_classes", "LightweightConvolutionTransformerDecoder")
class LightweightConvolutionTransformerDecoder(BaseTransformerDecoder):
def __init__(
self,
@ -577,7 +577,7 @@ class LightweightConvolutionTransformerDecoder(BaseTransformerDecoder):
),
)
@register_class("decoder_classes", "LightweightConvolution2DTransformerDecoder")
@tables.register("decoder_classes", "LightweightConvolution2DTransformerDecoder")
class LightweightConvolution2DTransformerDecoder(BaseTransformerDecoder):
def __init__(
self,
@ -639,7 +639,7 @@ class LightweightConvolution2DTransformerDecoder(BaseTransformerDecoder):
)
@register_class("decoder_classes", "DynamicConvolutionTransformerDecoder")
@tables.register("decoder_classes", "DynamicConvolutionTransformerDecoder")
class DynamicConvolutionTransformerDecoder(BaseTransformerDecoder):
def __init__(
self,
@ -700,7 +700,7 @@ class DynamicConvolutionTransformerDecoder(BaseTransformerDecoder):
),
)
@register_class("decoder_classes", "DynamicConvolution2DTransformerDecoder")
@tables.register("decoder_classes", "DynamicConvolution2DTransformerDecoder")
class DynamicConvolution2DTransformerDecoder(BaseTransformerDecoder):
def __init__(
self,

View File

@ -14,7 +14,7 @@ from funasr.models.transformer.layer_norm import LayerNorm
from funasr.models.sanm.positionwise_feed_forward import PositionwiseFeedForwardDecoderSANM
from funasr.models.transformer.utils.repeat import repeat
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
class DecoderLayerSANM(nn.Module):
"""Single decoder layer module.
@ -190,7 +190,7 @@ class DecoderLayerSANM(nn.Module):
return x, memory, fsmn_cache, opt_cache
@register_class("decoder_classes", "FsmnDecoder")
@tables.register("decoder_classes", "FsmnDecoder")
class FsmnDecoder(BaseTransformerDecoder):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group

View File

@ -30,7 +30,7 @@ from funasr.models.transformer.utils.subsampling import check_short_utt
from funasr.models.ctc.ctc import CTC
from funasr.utils.register import register_class
from funasr.register import tables
class EncoderLayerSANM(nn.Module):
def __init__(
@ -153,7 +153,7 @@ class EncoderLayerSANM(nn.Module):
return x, cache
@register_class("encoder_classes", "SANMEncoder")
@tables.register("encoder_classes", "SANMEncoder")
class SANMEncoder(nn.Module):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group

View File

@ -3,9 +3,9 @@ import logging
import torch
from funasr.models.transformer.model import Transformer
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
@register_class("model_classes", "SANM")
@tables.register("model_classes", "SANM")
class SANM(Transformer):
"""CTC-attention hybrid Encoder-Decoder model"""

View File

@ -14,7 +14,7 @@ from funasr.models.transformer.layer_norm import LayerNorm
from funasr.models.sanm.positionwise_feed_forward import PositionwiseFeedForwardDecoderSANM
from funasr.models.transformer.utils.repeat import repeat
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
class DecoderLayerSANM(nn.Module):
"""Single decoder layer module.
@ -189,7 +189,7 @@ class DecoderLayerSANM(nn.Module):
return x, memory, fsmn_cache, opt_cache
@register_class("decoder_classes", "FsmnDecoderSCAMAOpt")
@tables.register("decoder_classes", "FsmnDecoderSCAMAOpt")
class FsmnDecoderSCAMAOpt(BaseTransformerDecoder):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group

View File

@ -30,7 +30,7 @@ from funasr.models.transformer.utils.mask import subsequent_mask, vad_mask
from funasr.models.ctc.ctc import CTC
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
class EncoderLayerSANM(nn.Module):
def __init__(
@ -154,7 +154,7 @@ class EncoderLayerSANM(nn.Module):
return x, cache
@register_class("encoder_classes", "SANMEncoderChunkOpt")
@tables.register("encoder_classes", "SANMEncoderChunkOpt")
class SANMEncoderChunkOpt(nn.Module):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group

View File

@ -51,10 +51,10 @@ from funasr.utils import postprocess_utils
from funasr.utils.datadir_writer import DatadirWriter
from funasr.models.paraformer.model import Paraformer
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
@register_class("model_classes", "SeacoParaformer")
@tables.register("model_classes", "SeacoParaformer")
class SeacoParaformer(Paraformer):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
@ -100,7 +100,7 @@ class SeacoParaformer(Paraformer):
seaco_decoder = kwargs.get("seaco_decoder", None)
if seaco_decoder is not None:
seaco_decoder_conf = kwargs.get("seaco_decoder_conf")
seaco_decoder_class = registry_tables.decoder_classes.get(seaco_decoder.lower())
seaco_decoder_class = tables.decoder_classes.get(seaco_decoder.lower())
self.seaco_decoder = seaco_decoder_class(
vocab_size=self.vocab_size,
encoder_output_size=self.inner_dim,

View File

@ -2,8 +2,8 @@
# You can modify the configuration according to your own requirements.
# to print the register_table:
# from funasr.utils.register import registry_tables
# registry_tables.print()
# from funasr.register import tables
# tables.print()
# network architecture
model: SeacoParaformer

View File

@ -7,11 +7,11 @@ from funasr.models.specaug.mask_along_axis import MaskAlongAxis
from funasr.models.specaug.mask_along_axis import MaskAlongAxisVariableMaxWidth
from funasr.models.specaug.mask_along_axis import MaskAlongAxisLFR
from funasr.models.specaug.time_warp import TimeWarp
from funasr.utils.register import register_class
from funasr.register import tables
import torch.nn as nn
@register_class("specaug_classes", "SpecAug")
@tables.register("specaug_classes", "SpecAug")
class SpecAug(nn.Module):
"""Implementation of SpecAug.
@ -101,7 +101,7 @@ class SpecAug(nn.Module):
x, x_lengths = self.time_mask(x, x_lengths)
return x, x_lengths
@register_class("specaug_classes", "SpecAugLFR")
@tables.register("specaug_classes", "SpecAugLFR")
class SpecAugLFR(nn.Module):
"""Implementation of SpecAug.
lfr_ratelow frame rate

View File

@ -26,7 +26,7 @@ from funasr.models.transformer.positionwise_feed_forward import (
from funasr.models.transformer.utils.repeat import repeat
from funasr.models.transformer.scorers.scorer_interface import BatchScorerInterface
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
class DecoderLayer(nn.Module):
"""Single decoder layer module.
@ -352,7 +352,7 @@ class BaseTransformerDecoder(nn.Module, BatchScorerInterface):
state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)]
return logp, state_list
@register_class("decoder_classes", "TransformerDecoder")
@tables.register("decoder_classes", "TransformerDecoder")
class TransformerDecoder(BaseTransformerDecoder):
def __init__(
self,
@ -401,7 +401,7 @@ class TransformerDecoder(BaseTransformerDecoder):
)
@register_class("decoder_classes", "LightweightConvolutionTransformerDecoder")
@tables.register("decoder_classes", "LightweightConvolutionTransformerDecoder")
class LightweightConvolutionTransformerDecoder(BaseTransformerDecoder):
def __init__(
self,
@ -462,7 +462,7 @@ class LightweightConvolutionTransformerDecoder(BaseTransformerDecoder):
),
)
@register_class("decoder_classes", "LightweightConvolution2DTransformerDecoder")
@tables.register("decoder_classes", "LightweightConvolution2DTransformerDecoder")
class LightweightConvolution2DTransformerDecoder(BaseTransformerDecoder):
def __init__(
self,
@ -524,7 +524,7 @@ class LightweightConvolution2DTransformerDecoder(BaseTransformerDecoder):
)
@register_class("decoder_classes", "DynamicConvolutionTransformerDecoder")
@tables.register("decoder_classes", "DynamicConvolutionTransformerDecoder")
class DynamicConvolutionTransformerDecoder(BaseTransformerDecoder):
def __init__(
self,
@ -585,7 +585,7 @@ class DynamicConvolutionTransformerDecoder(BaseTransformerDecoder):
),
)
@register_class("decoder_classes", "DynamicConvolution2DTransformerDecoder")
@tables.register("decoder_classes", "DynamicConvolution2DTransformerDecoder")
class DynamicConvolution2DTransformerDecoder(BaseTransformerDecoder):
def __init__(
self,

View File

@ -28,7 +28,7 @@ from funasr.models.transformer.utils.subsampling import Conv2dSubsampling8
from funasr.models.transformer.utils.subsampling import TooShortUttError
from funasr.models.transformer.utils.subsampling import check_short_utt
from funasr.utils.register import register_class
from funasr.register import tables
class EncoderLayer(nn.Module):
"""Encoder layer module.
@ -136,7 +136,7 @@ class EncoderLayer(nn.Module):
return x, mask
@register_class("encoder_classes", "TransformerEncoder")
@tables.register("encoder_classes", "TransformerEncoder")
class TransformerEncoder(nn.Module):
"""Transformer encoder module.

View File

@ -15,9 +15,9 @@ from funasr.train_utils.device_funcs import force_gatherable
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio, extract_fbank
from funasr.utils import postprocess_utils
from funasr.utils.datadir_writer import DatadirWriter
from funasr.utils.register import register_class, registry_tables
from funasr.register import tables
@register_class("model_classes", "Transformer")
@tables.register("model_classes", "Transformer")
class Transformer(nn.Module):
"""CTC-attention hybrid Encoder-Decoder model"""
@ -60,19 +60,19 @@ class Transformer(nn.Module):
super().__init__()
if frontend is not None:
frontend_class = registry_tables.frontend_classes.get_class(frontend.lower())
frontend_class = tables.frontend_classes.get_class(frontend.lower())
frontend = frontend_class(**frontend_conf)
if specaug is not None:
specaug_class = registry_tables.specaug_classes.get_class(specaug.lower())
specaug_class = tables.specaug_classes.get_class(specaug.lower())
specaug = specaug_class(**specaug_conf)
if normalize is not None:
normalize_class = registry_tables.normalize_classes.get_class(normalize.lower())
normalize_class = tables.normalize_classes.get_class(normalize.lower())
normalize = normalize_class(**normalize_conf)
encoder_class = registry_tables.encoder_classes.get_class(encoder.lower())
encoder_class = tables.encoder_classes.get_class(encoder.lower())
encoder = encoder_class(input_size=input_size, **encoder_conf)
encoder_output_size = encoder.output_size()
if decoder is not None:
decoder_class = registry_tables.decoder_classes.get_class(decoder.lower())
decoder_class = tables.decoder_classes.get_class(decoder.lower())
decoder = decoder_class(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,

View File

@ -2,8 +2,8 @@
# You can modify the configuration according to your own requirements.
# to print the register_table:
# from funasr.utils.register import registry_tables
# registry_tables.print()
# from funasr.register import tables
# tables.print()
# network architecture
#model: funasr.models.paraformer.model:Paraformer

77
funasr/register.py Normal file
View File

@ -0,0 +1,77 @@
import logging
import inspect
from dataclasses import dataclass
@dataclass
class RegisterTables:
model_classes = {}
frontend_classes = {}
specaug_classes = {}
normalize_classes = {}
encoder_classes = {}
decoder_classes = {}
joint_network_classes = {}
predictor_classes = {}
stride_conv_classes = {}
tokenizer_classes = {}
batch_sampler_classes = {}
dataset_classes = {}
index_ds_classes = {}
def print(self,):
print("\ntables: \n")
fields = vars(self)
for classes_key, classes_dict in fields.items():
print(f"----------- ** {classes_key.replace('_meta', '')} ** --------------")
if classes_key.endswith("_meta"):
headers = ["class name", "register name", "class location"]
metas = []
for register_key, meta in classes_dict.items():
metas.append(meta)
metas.sort(key=lambda x: x[0])
data = [headers] + metas
col_widths = [max(len(str(item)) for item in col) for col in zip(*data)]
for row in data:
print("| " + " | ".join(str(item).ljust(width) for item, width in zip(row, col_widths)) + " |")
print("\n")
def register(self, register_tables_key: str, key=None):
def decorator(target_class):
if not hasattr(self, register_tables_key):
setattr(self, register_tables_key, {})
logging.info("new registry table has been added: {}".format(register_tables_key))
registry = getattr(self, register_tables_key)
registry_key = key if key is not None else target_class.__name__
registry_key = registry_key.lower()
# import pdb; pdb.set_trace()
assert not registry_key in registry, "(key: {} / class: {}) has been registered alreadyin {}".format(
registry_key, target_class, register_tables_key)
registry[registry_key] = target_class
# meta headers = ["class name", "register name", "class location"]
register_tables_key_meta = register_tables_key + "_meta"
if not hasattr(self, register_tables_key_meta):
setattr(self, register_tables_key_meta, {})
registry_meta = getattr(self, register_tables_key_meta)
class_file = inspect.getfile(target_class)
class_line = inspect.getsourcelines(target_class)[1]
meata_data = [f"{target_class.__name__}", f"{registry_key}", f"{class_file}:{class_line}"]
registry_meta[registry_key] = meata_data
# print(f"Registering class: {class_file}:{class_line} - {target_class.__name__} as {registry_key}")
return target_class
return decorator
tables = RegisterTables()
import funasr

View File

@ -5,9 +5,9 @@ from typing import Union
import warnings
from funasr.tokenizer.abs_tokenizer import BaseTokenizer
from funasr.utils.register import register_class
from funasr.register import tables
@register_class("tokenizer_classes", "CharTokenizer")
@tables.register("tokenizer_classes", "CharTokenizer")
class CharTokenizer(BaseTokenizer):
def __init__(
self,

View File

@ -1,72 +0,0 @@
import logging
import inspect
from dataclasses import dataclass
@dataclass
class ClassRegistryTables:
model_classes = {}
frontend_classes = {}
specaug_classes = {}
normalize_classes = {}
encoder_classes = {}
decoder_classes = {}
joint_network_classes = {}
predictor_classes = {}
stride_conv_classes = {}
tokenizer_classes = {}
batch_sampler_classes = {}
dataset_classes = {}
index_ds_classes = {}
def print(self,):
print("\nregister_tables: \n")
fields = vars(self)
for classes_key, classes_dict in fields.items():
print(f"----------- ** {classes_key.replace('_meta', '')} ** --------------")
if classes_key.endswith("_meta"):
headers = ["class name", "register name", "class location"]
metas = []
for register_key, meta in classes_dict.items():
metas.append(meta)
metas.sort(key=lambda x: x[0])
data = [headers] + metas
col_widths = [max(len(str(item)) for item in col) for col in zip(*data)]
for row in data:
print("| " + " | ".join(str(item).ljust(width) for item, width in zip(row, col_widths)) + " |")
print("\n")
registry_tables = ClassRegistryTables()
def register_class(registry_tables_key:str, key=None):
def decorator(target_class):
if not hasattr(registry_tables, registry_tables_key):
setattr(registry_tables, registry_tables_key, {})
logging.info("new registry table has been added: {}".format(registry_tables_key))
registry = getattr(registry_tables, registry_tables_key)
registry_key = key if key is not None else target_class.__name__
registry_key = registry_key.lower()
# import pdb; pdb.set_trace()
assert not registry_key in registry, "(key: {} / class: {}) has been registered alreadyin {}".format(registry_key, target_class, registry_tables_key)
registry[registry_key] = target_class
# meta headers = ["class name", "register name", "class location"]
registry_tables_key_meta = registry_tables_key + "_meta"
if not hasattr(registry_tables, registry_tables_key_meta):
setattr(registry_tables, registry_tables_key_meta, {})
registry_meta = getattr(registry_tables, registry_tables_key_meta)
class_file = inspect.getfile(target_class)
class_line = inspect.getsourcelines(target_class)[1]
meata_data = [f"{target_class.__name__}", f"{registry_key}", f"{class_file}:{class_line}"]
registry_meta[registry_key] = meata_data
# print(f"Registering class: {class_file}:{class_line} - {target_class.__name__} as {registry_key}")
return target_class
return decorator
import funasr