mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
rename register tables
This commit is contained in:
parent
f920ca6298
commit
a1b0cd33d5
@ -2,13 +2,13 @@
|
||||
cmd="funasr/bin/inference.py"
|
||||
|
||||
python $cmd \
|
||||
+model="/Users/zhifu/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||||
+model="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" \
|
||||
+input="/Users/zhifu/Downloads/asr_example.wav" \
|
||||
+output_dir="/Users/zhifu/Downloads/ckpt/funasr2/exp2" \
|
||||
+device="cpu" \
|
||||
|
||||
python $cmd \
|
||||
+model="/Users/zhifu/modelscope_models/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404" \
|
||||
+model="/Users/zhifu/Downloads/modelscope_models/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404" \
|
||||
+input="/Users/zhifu/Downloads/asr_example.wav" \
|
||||
+output_dir="/Users/zhifu/Downloads/ckpt/funasr2/exp2" \
|
||||
+device="cpu" \
|
||||
|
||||
@ -15,7 +15,7 @@ from funasr.train_utils.load_pretrained_model import load_pretrained_model
|
||||
import time
|
||||
import random
|
||||
import string
|
||||
from funasr.utils.register import registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
|
||||
def build_iter_for_infer(data_in, input_len=None, data_type="sound"):
|
||||
@ -81,7 +81,7 @@ def main_hydra(kwargs: DictConfig):
|
||||
|
||||
class AutoModel:
|
||||
def __init__(self, **kwargs):
|
||||
registry_tables.print()
|
||||
tables.print()
|
||||
assert "model" in kwargs
|
||||
if "model_conf" not in kwargs:
|
||||
logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms")))
|
||||
@ -98,7 +98,7 @@ class AutoModel:
|
||||
# build tokenizer
|
||||
tokenizer = kwargs.get("tokenizer", None)
|
||||
if tokenizer is not None:
|
||||
tokenizer_class = registry_tables.tokenizer_classes.get(tokenizer.lower())
|
||||
tokenizer_class = tables.tokenizer_classes.get(tokenizer.lower())
|
||||
tokenizer = tokenizer_class(**kwargs["tokenizer_conf"])
|
||||
kwargs["tokenizer"] = tokenizer
|
||||
kwargs["token_list"] = tokenizer.token_list
|
||||
@ -106,13 +106,13 @@ class AutoModel:
|
||||
# build frontend
|
||||
frontend = kwargs.get("frontend", None)
|
||||
if frontend is not None:
|
||||
frontend_class = registry_tables.frontend_classes.get(frontend.lower())
|
||||
frontend_class = tables.frontend_classes.get(frontend.lower())
|
||||
frontend = frontend_class(**kwargs["frontend_conf"])
|
||||
kwargs["frontend"] = frontend
|
||||
kwargs["input_size"] = frontend.output_size()
|
||||
|
||||
# build model
|
||||
model_class = registry_tables.model_classes.get(kwargs["model"].lower())
|
||||
model_class = tables.model_classes.get(kwargs["model"].lower())
|
||||
model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=len(tokenizer.token_list) if tokenizer is not None else -1)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
@ -21,7 +21,7 @@ import torch.distributed as dist
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
||||
from funasr.download.download_from_hub import download_model
|
||||
from funasr.utils.register import registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
@hydra.main(config_name=None, version_base=None)
|
||||
def main_hydra(kwargs: DictConfig):
|
||||
@ -39,7 +39,7 @@ def main(**kwargs):
|
||||
# preprocess_config(kwargs)
|
||||
# import pdb; pdb.set_trace()
|
||||
# set random seed
|
||||
registry_tables.print()
|
||||
tables.print()
|
||||
set_all_random_seed(kwargs.get("seed", 0))
|
||||
torch.backends.cudnn.enabled = kwargs.get("cudnn_enabled", torch.backends.cudnn.enabled)
|
||||
torch.backends.cudnn.benchmark = kwargs.get("cudnn_benchmark", torch.backends.cudnn.benchmark)
|
||||
@ -62,14 +62,14 @@ def main(**kwargs):
|
||||
|
||||
tokenizer = kwargs.get("tokenizer", None)
|
||||
if tokenizer is not None:
|
||||
tokenizer_class = registry_tables.tokenizer_classes.get(tokenizer.lower())
|
||||
tokenizer_class = tables.tokenizer_classes.get(tokenizer.lower())
|
||||
tokenizer = tokenizer_class(**kwargs["tokenizer_conf"])
|
||||
kwargs["tokenizer"] = tokenizer
|
||||
|
||||
# build frontend if frontend is none None
|
||||
frontend = kwargs.get("frontend", None)
|
||||
if frontend is not None:
|
||||
frontend_class = registry_tables.frontend_classes.get(frontend.lower())
|
||||
frontend_class = tables.frontend_classes.get(frontend.lower())
|
||||
frontend = frontend_class(**kwargs["frontend_conf"])
|
||||
kwargs["frontend"] = frontend
|
||||
kwargs["input_size"] = frontend.output_size()
|
||||
@ -77,7 +77,7 @@ def main(**kwargs):
|
||||
# import pdb;
|
||||
# pdb.set_trace()
|
||||
# build model
|
||||
model_class = registry_tables.model_classes.get(kwargs["model"].lower())
|
||||
model_class = tables.model_classes.get(kwargs["model"].lower())
|
||||
model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=len(tokenizer.token_list))
|
||||
|
||||
|
||||
@ -139,12 +139,12 @@ def main(**kwargs):
|
||||
# import pdb;
|
||||
# pdb.set_trace()
|
||||
# dataset
|
||||
dataset_class = registry_tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset").lower())
|
||||
dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset").lower())
|
||||
dataset_tr = dataset_class(kwargs.get("train_data_set_list"), frontend=frontend, tokenizer=tokenizer, **kwargs.get("dataset_conf"))
|
||||
|
||||
# dataloader
|
||||
batch_sampler = kwargs["dataset_conf"].get("batch_sampler", "DynamicBatchLocalShuffleSampler")
|
||||
batch_sampler_class = registry_tables.batch_sampler_classes.get(batch_sampler.lower())
|
||||
batch_sampler_class = tables.batch_sampler_classes.get(batch_sampler.lower())
|
||||
if batch_sampler is not None:
|
||||
batch_sampler = batch_sampler_class(dataset_tr, **kwargs.get("dataset_conf"))
|
||||
dataloader_tr = torch.utils.data.DataLoader(dataset_tr,
|
||||
|
||||
@ -9,9 +9,9 @@ import time
|
||||
import logging
|
||||
|
||||
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio, extract_fbank
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("dataset_classes", "AudioDataset")
|
||||
@tables.register("dataset_classes", "AudioDataset")
|
||||
class AudioDataset(torch.utils.data.Dataset):
|
||||
def __init__(self,
|
||||
path,
|
||||
@ -22,16 +22,16 @@ class AudioDataset(torch.utils.data.Dataset):
|
||||
float_pad_value: float = 0.0,
|
||||
**kwargs):
|
||||
super().__init__()
|
||||
index_ds_class = registry_tables.index_ds_classes.get(index_ds.lower())
|
||||
index_ds_class = tables.index_ds_classes.get(index_ds.lower())
|
||||
self.index_ds = index_ds_class(path)
|
||||
preprocessor_speech = kwargs.get("preprocessor_speech", None)
|
||||
if preprocessor_speech:
|
||||
preprocessor_speech_class = registry_tables.preprocessor_speech_classes.get(preprocessor_speech.lower())
|
||||
preprocessor_speech_class = tables.preprocessor_speech_classes.get(preprocessor_speech.lower())
|
||||
preprocessor_speech = preprocessor_speech_class(**kwargs.get("preprocessor_speech_conf"))
|
||||
self.preprocessor_speech = preprocessor_speech
|
||||
preprocessor_text = kwargs.get("preprocessor_text", None)
|
||||
if preprocessor_text:
|
||||
preprocessor_text_class = registry_tables.preprocessor_text_classes.get(preprocessor_text.lower())
|
||||
preprocessor_text_class = tables.preprocessor_text_classes.get(preprocessor_text.lower())
|
||||
preprocessor_text = preprocessor_text_class(**kwargs.get("preprocessor_text_conf"))
|
||||
self.preprocessor_text = preprocessor_text
|
||||
|
||||
|
||||
@ -4,9 +4,9 @@ import torch.distributed as dist
|
||||
import time
|
||||
import logging
|
||||
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("index_ds_classes", "IndexDSJsonl")
|
||||
@tables.register("index_ds_classes", "IndexDSJsonl")
|
||||
class IndexDSJsonl(torch.utils.data.Dataset):
|
||||
|
||||
def __init__(self, path):
|
||||
|
||||
@ -2,9 +2,9 @@ import torch
|
||||
|
||||
import numpy as np
|
||||
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("batch_sampler_classes", "DynamicBatchLocalShuffleSampler")
|
||||
@tables.register("batch_sampler_classes", "DynamicBatchLocalShuffleSampler")
|
||||
class BatchSampler(torch.utils.data.BatchSampler):
|
||||
|
||||
def __init__(self, dataset,
|
||||
|
||||
@ -9,7 +9,7 @@ import torchaudio.compliance.kaldi as kaldi
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
import funasr.frontends.eend_ola_feature as eend_ola_feature
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
|
||||
|
||||
@ -75,7 +75,7 @@ def apply_lfr(inputs, lfr_m, lfr_n):
|
||||
LFR_outputs = torch.vstack(LFR_inputs)
|
||||
return LFR_outputs.type(torch.float32)
|
||||
|
||||
@register_class("frontend_classes", "WavFrontend")
|
||||
@tables.register("frontend_classes", "WavFrontend")
|
||||
class WavFrontend(nn.Module):
|
||||
"""Conventional frontend structure for ASR.
|
||||
"""
|
||||
@ -211,7 +211,7 @@ class WavFrontend(nn.Module):
|
||||
return feats_pad, feats_lens
|
||||
|
||||
|
||||
@register_class("frontend_classes", "WavFrontendOnline")
|
||||
@tables.register("frontend_classes", "WavFrontendOnline")
|
||||
class WavFrontendOnline(nn.Module):
|
||||
"""Conventional frontend structure for streaming ASR/VAD.
|
||||
"""
|
||||
|
||||
@ -8,7 +8,7 @@
|
||||
# from funasr.models.scama.utils import sequence_mask
|
||||
# from typing import Optional, Tuple
|
||||
#
|
||||
# from funasr.utils.register import register_class
|
||||
# from funasr.register import tables
|
||||
#
|
||||
# class mae_loss(nn.Module):
|
||||
#
|
||||
@ -93,7 +93,7 @@
|
||||
# fires = torch.stack(list_fires, 1)
|
||||
# return fires
|
||||
#
|
||||
# @register_class("predictor_classes", "BATPredictor")
|
||||
# @tables.register("predictor_classes", "BATPredictor")
|
||||
# class BATPredictor(nn.Module):
|
||||
# def __init__(self, idim, l_order, r_order, threshold=1.0, dropout=0.1, smooth_factor=1.0, noise_threshold=0, return_accum=False):
|
||||
# super(BATPredictor, self).__init__()
|
||||
|
||||
@ -29,7 +29,7 @@ from funasr.models.transformer.utils.repeat import repeat, MultiBlocks
|
||||
from funasr.models.transformer.utils.subsampling import TooShortUttError
|
||||
from funasr.models.transformer.utils.subsampling import check_short_utt
|
||||
from funasr.models.transformer.utils.subsampling import StreamingConvInput
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
|
||||
|
||||
@ -312,7 +312,7 @@ class CausalConvolution(nn.Module):
|
||||
|
||||
return x, cache
|
||||
|
||||
@register_class("encoder_classes", "ConformerChunkEncoder")
|
||||
@tables.register("encoder_classes", "ConformerChunkEncoder")
|
||||
class ConformerChunkEncoder(nn.Module):
|
||||
"""Encoder module definition.
|
||||
Args:
|
||||
|
||||
@ -8,7 +8,7 @@ from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
||||
from funasr.models.scama.utils import sequence_mask
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
|
||||
class mae_loss(nn.Module):
|
||||
@ -94,7 +94,7 @@ def cif_wo_hidden(alphas, threshold):
|
||||
fires = torch.stack(list_fires, 1)
|
||||
return fires
|
||||
|
||||
@register_class("predictor_classes", "CifPredictorV3")
|
||||
@tables.register("predictor_classes", "CifPredictorV3")
|
||||
class CifPredictorV3(nn.Module):
|
||||
def __init__(self,
|
||||
idim,
|
||||
|
||||
@ -27,12 +27,12 @@ from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio,
|
||||
from funasr.utils import postprocess_utils
|
||||
from funasr.utils.datadir_writer import DatadirWriter
|
||||
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
from funasr.models.ctc.ctc import CTC
|
||||
|
||||
from funasr.models.paraformer.model import Paraformer
|
||||
|
||||
@register_class("model_classes", "BiCifParaformer")
|
||||
@tables.register("model_classes", "BiCifParaformer")
|
||||
class BiCifParaformer(Paraformer):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
|
||||
@ -43,7 +43,7 @@ from funasr.models.transformer.utils.subsampling import (
|
||||
check_short_utt,
|
||||
)
|
||||
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
class BranchformerEncoderLayer(torch.nn.Module):
|
||||
"""Branchformer encoder layer module.
|
||||
@ -291,7 +291,7 @@ class BranchformerEncoderLayer(torch.nn.Module):
|
||||
|
||||
return x, mask
|
||||
|
||||
@register_class("encoder_classes", "BranchformerEncoder")
|
||||
@tables.register("encoder_classes", "BranchformerEncoder")
|
||||
class BranchformerEncoder(nn.Module):
|
||||
"""Branchformer encoder module."""
|
||||
|
||||
|
||||
@ -1,9 +1,9 @@
|
||||
import logging
|
||||
|
||||
from funasr.models.transformer.model import Transformer
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("model_classes", "Branchformer")
|
||||
@tables.register("model_classes", "Branchformer")
|
||||
class Branchformer(Transformer):
|
||||
"""CTC-attention hybrid Encoder-Decoder model"""
|
||||
|
||||
|
||||
@ -45,7 +45,7 @@ from funasr.models.transformer.utils.subsampling import TooShortUttError
|
||||
from funasr.models.transformer.utils.subsampling import check_short_utt
|
||||
from funasr.models.transformer.utils.subsampling import Conv2dSubsamplingPad
|
||||
from funasr.models.transformer.utils.subsampling import StreamingConvInput
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
|
||||
class ConvolutionModule(nn.Module):
|
||||
@ -283,7 +283,7 @@ class EncoderLayer(nn.Module):
|
||||
return x, mask
|
||||
|
||||
|
||||
@register_class("encoder_classes", "ConformerEncoder")
|
||||
@tables.register("encoder_classes", "ConformerEncoder")
|
||||
class ConformerEncoder(nn.Module):
|
||||
"""Conformer encoder module.
|
||||
|
||||
|
||||
@ -3,9 +3,9 @@ import logging
|
||||
import torch
|
||||
|
||||
from funasr.models.transformer.model import Transformer
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("model_classes", "Conformer")
|
||||
@tables.register("model_classes", "Conformer")
|
||||
class Conformer(Transformer):
|
||||
"""CTC-attention hybrid Encoder-Decoder model"""
|
||||
|
||||
|
||||
@ -2,8 +2,8 @@
|
||||
# You can modify the configuration according to your own requirements.
|
||||
|
||||
# to print the register_table:
|
||||
# from funasr.utils.register import registry_tables
|
||||
# registry_tables.print()
|
||||
# from funasr.register import tables
|
||||
# tables.print()
|
||||
|
||||
# network architecture
|
||||
#model: funasr.models.paraformer.model:Paraformer
|
||||
|
||||
@ -31,7 +31,7 @@ from funasr.models.transformer.utils.mask import subsequent_mask, vad_mask
|
||||
|
||||
from funasr.models.ctc.ctc import CTC
|
||||
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
class EncoderLayerSANM(nn.Module):
|
||||
def __init__(
|
||||
@ -155,7 +155,7 @@ class EncoderLayerSANM(nn.Module):
|
||||
return x, cache
|
||||
|
||||
|
||||
@register_class("encoder_classes", "SANMVadEncoder")
|
||||
@tables.register("encoder_classes", "SANMVadEncoder")
|
||||
class SANMVadEncoder(nn.Module):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
|
||||
@ -5,9 +5,9 @@ from typing import Tuple
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("model_classes", "CTTransformer")
|
||||
@tables.register("model_classes", "CTTransformer")
|
||||
class CTTransformer(nn.Module):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
@ -37,7 +37,7 @@ class CTTransformer(nn.Module):
|
||||
|
||||
|
||||
self.embed = nn.Embedding(vocab_size, embed_unit)
|
||||
encoder_class = registry_tables.encoder_classes.get(encoder.lower())
|
||||
encoder_class = tables.encoder_classes.get(encoder.lower())
|
||||
encoder = encoder_class(**encoder_conf)
|
||||
|
||||
self.decoder = nn.Linear(att_unit, punc_size)
|
||||
|
||||
@ -42,7 +42,7 @@ from funasr.models.transformer.utils.subsampling import (
|
||||
TooShortUttError,
|
||||
check_short_utt,
|
||||
)
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
class EBranchformerEncoderLayer(torch.nn.Module):
|
||||
"""E-Branchformer encoder layer module.
|
||||
@ -174,7 +174,7 @@ class EBranchformerEncoderLayer(torch.nn.Module):
|
||||
|
||||
return x, mask
|
||||
|
||||
@register_class("encoder_classes", "EBranchformerEncoder")
|
||||
@tables.register("encoder_classes", "EBranchformerEncoder")
|
||||
class EBranchformerEncoder(nn.Module):
|
||||
"""E-Branchformer encoder module."""
|
||||
|
||||
|
||||
@ -1,9 +1,9 @@
|
||||
import logging
|
||||
|
||||
from funasr.models.transformer.model import Transformer
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("model_classes", "EBranchformer")
|
||||
@tables.register("model_classes", "EBranchformer")
|
||||
class EBranchformer(Transformer):
|
||||
"""CTC-attention hybrid Encoder-Decoder model"""
|
||||
|
||||
|
||||
@ -6,7 +6,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
class LinearTransform(nn.Module):
|
||||
|
||||
@ -158,7 +158,7 @@ num_syn: output dimension
|
||||
fsmn_layers: no. of sequential fsmn layers
|
||||
'''
|
||||
|
||||
@register_class("encoder_classes", "FSMN")
|
||||
@tables.register("encoder_classes", "FSMN")
|
||||
class FSMN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -229,7 +229,7 @@ lstride: left stride
|
||||
rstride: right stride
|
||||
'''
|
||||
|
||||
@register_class("encoder_classes", "DFSMN")
|
||||
@tables.register("encoder_classes", "DFSMN")
|
||||
class DFSMN(nn.Module):
|
||||
|
||||
def __init__(self, dimproj=64, dimlinear=128, lorder=20, rorder=1, lstride=1, rstride=1):
|
||||
|
||||
@ -8,7 +8,7 @@ from torch import nn
|
||||
import math
|
||||
from typing import Optional
|
||||
import time
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio,extract_fbank
|
||||
from funasr.utils.datadir_writer import DatadirWriter
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
@ -218,7 +218,7 @@ class WindowDetector(object):
|
||||
return int(self.frame_size_ms)
|
||||
|
||||
|
||||
@register_class("model_classes", "FsmnVAD")
|
||||
@tables.register("model_classes", "FsmnVAD")
|
||||
class FsmnVAD(nn.Module):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
@ -238,7 +238,7 @@ class FsmnVAD(nn.Module):
|
||||
self.vad_opts.speech_to_sil_time_thres,
|
||||
self.vad_opts.frame_in_ms)
|
||||
|
||||
encoder_class = registry_tables.encoder_classes.get(encoder.lower())
|
||||
encoder_class = tables.encoder_classes.get(encoder.lower())
|
||||
encoder = encoder_class(**encoder_conf)
|
||||
self.encoder = encoder
|
||||
# init variables
|
||||
|
||||
62
funasr/models/fsmn_vad/template.yaml
Normal file
62
funasr/models/fsmn_vad/template.yaml
Normal file
@ -0,0 +1,62 @@
|
||||
# This is an example that demonstrates how to configure a model file.
|
||||
# You can modify the configuration according to your own requirements.
|
||||
|
||||
# to print the register_table:
|
||||
# from funasr.register import tables
|
||||
# tables.print()
|
||||
|
||||
# network architecture
|
||||
model: FsmnVAD
|
||||
model_conf:
|
||||
sample_rate: 16000
|
||||
detect_mode: 1
|
||||
snr_mode: 0
|
||||
max_end_silence_time: 800
|
||||
max_start_silence_time: 3000
|
||||
do_start_point_detection: True
|
||||
do_end_point_detection: True
|
||||
window_size_ms: 200
|
||||
sil_to_speech_time_thres: 150
|
||||
speech_to_sil_time_thres: 150
|
||||
speech_2_noise_ratio: 1.0
|
||||
do_extend: 1
|
||||
lookback_time_start_point: 200
|
||||
lookahead_time_end_point: 100
|
||||
max_single_segment_time: 60000
|
||||
snr_thres: -100.0
|
||||
noise_frame_num_used_for_snr: 100
|
||||
decibel_thres: -100.0
|
||||
speech_noise_thres: 0.6
|
||||
fe_prior_thres: 0.0001
|
||||
silence_pdf_num: 1
|
||||
sil_pdf_ids: [0]
|
||||
speech_noise_thresh_low: -0.1
|
||||
speech_noise_thresh_high: 0.3
|
||||
output_frame_probs: False
|
||||
frame_in_ms: 10
|
||||
frame_length_ms: 25
|
||||
|
||||
encoder: FSMN
|
||||
encoder_conf:
|
||||
input_dim: 400
|
||||
input_affine_dim: 140
|
||||
fsmn_layers: 4
|
||||
linear_dim: 250
|
||||
proj_dim: 128
|
||||
lorder: 20
|
||||
rorder: 0
|
||||
lstride: 1
|
||||
rstride: 0
|
||||
output_affine_dim: 140
|
||||
output_dim: 248
|
||||
|
||||
frontend: WavFrontend
|
||||
frontend_conf:
|
||||
fs: 16000
|
||||
window: hamming
|
||||
n_mels: 80
|
||||
frame_length: 25
|
||||
frame_shift: 10
|
||||
dither: 0.0
|
||||
lfr_m: 5
|
||||
lfr_n: 1
|
||||
@ -14,7 +14,7 @@ from funasr.models.sanm.positionwise_feed_forward import PositionwiseFeedForward
|
||||
from funasr.models.transformer.utils.repeat import repeat
|
||||
from funasr.models.paraformer.decoder import DecoderLayerSANM, ParaformerSANMDecoder
|
||||
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
class ContextualDecoderLayer(nn.Module):
|
||||
def __init__(
|
||||
@ -98,7 +98,7 @@ class ContextualBiasDecoder(nn.Module):
|
||||
x = self.dropout(self.src_attn(x, memory, memory_mask))
|
||||
return x, tgt_mask, memory, memory_mask, cache
|
||||
|
||||
@register_class("decoder_classes", "ContextualParaformerDecoder")
|
||||
@tables.register("decoder_classes", "ContextualParaformerDecoder")
|
||||
class ContextualParaformerDecoder(ParaformerSANMDecoder):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
|
||||
@ -53,9 +53,9 @@ from funasr.utils.datadir_writer import DatadirWriter
|
||||
|
||||
from funasr.models.paraformer.model import Paraformer
|
||||
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("model_classes", "NeatContextualParaformer")
|
||||
@tables.register("model_classes", "NeatContextualParaformer")
|
||||
class NeatContextualParaformer(Paraformer):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
|
||||
@ -2,8 +2,8 @@
|
||||
# You can modify the configuration according to your own requirements.
|
||||
|
||||
# to print the register_table:
|
||||
# from funasr.utils.register import registry_tables
|
||||
# registry_tables.print()
|
||||
# from funasr.register import tables
|
||||
# tables.print()
|
||||
|
||||
# network architecture
|
||||
model: NeatContextualParaformer
|
||||
|
||||
@ -6,9 +6,9 @@ import numpy as np
|
||||
import torch
|
||||
|
||||
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("normalize_classes", "GlobalMVN")
|
||||
@tables.register("normalize_classes", "GlobalMVN")
|
||||
class GlobalMVN(torch.nn.Module):
|
||||
"""Apply global mean and variance normalization
|
||||
TODO(kamo): Make this class portable somehow
|
||||
|
||||
@ -3,9 +3,9 @@ from typing import Tuple
|
||||
import torch
|
||||
|
||||
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("normalize_classes", "UtteranceMVN")
|
||||
@tables.register("normalize_classes", "UtteranceMVN")
|
||||
class UtteranceMVN(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
|
||||
@ -8,9 +8,9 @@ from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
||||
from funasr.models.scama.utils import sequence_mask
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("predictor_classes", "CifPredictor")
|
||||
@tables.register("predictor_classes", "CifPredictor")
|
||||
class CifPredictor(nn.Module):
|
||||
def __init__(self, idim, l_order, r_order, threshold=1.0, dropout=0.1, smooth_factor=1.0, noise_threshold=0, tail_threshold=0.45):
|
||||
super().__init__()
|
||||
@ -136,7 +136,7 @@ class CifPredictor(nn.Module):
|
||||
predictor_alignments_length = predictor_alignments.sum(-1).type(encoder_sequence_length.dtype)
|
||||
return predictor_alignments.detach(), predictor_alignments_length.detach()
|
||||
|
||||
@register_class("predictor_classes", "CifPredictorV2")
|
||||
@tables.register("predictor_classes", "CifPredictorV2")
|
||||
class CifPredictorV2(nn.Module):
|
||||
def __init__(self,
|
||||
idim,
|
||||
|
||||
@ -17,7 +17,7 @@ from funasr.models.transformer.attention import MultiHeadedAttention
|
||||
from funasr.models.transformer.embedding import PositionalEncoding
|
||||
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
||||
from funasr.models.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
class DecoderLayerSANM(nn.Module):
|
||||
"""Single decoder layer module.
|
||||
@ -200,7 +200,7 @@ class DecoderLayerSANM(nn.Module):
|
||||
return x, memory, fsmn_cache, opt_cache
|
||||
|
||||
|
||||
@register_class("decoder_classes", "ParaformerSANMDecoder")
|
||||
@tables.register("decoder_classes", "ParaformerSANMDecoder")
|
||||
class ParaformerSANMDecoder(BaseTransformerDecoder):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
@ -525,7 +525,7 @@ class ParaformerSANMDecoder(BaseTransformerDecoder):
|
||||
return y, new_cache
|
||||
|
||||
|
||||
@register_class("decoder_classes", "ParaformerDecoderSAN")
|
||||
@tables.register("decoder_classes", "ParaformerDecoderSAN")
|
||||
class ParaformerDecoderSAN(BaseTransformerDecoder):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
|
||||
@ -25,10 +25,10 @@ from torch.cuda.amp import autocast
|
||||
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio, extract_fbank
|
||||
from funasr.utils import postprocess_utils
|
||||
from funasr.utils.datadir_writer import DatadirWriter
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
from funasr.models.ctc.ctc import CTC
|
||||
|
||||
@register_class("model_classes", "Paraformer")
|
||||
@tables.register("model_classes", "Paraformer")
|
||||
class Paraformer(nn.Module):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
@ -79,17 +79,17 @@ class Paraformer(nn.Module):
|
||||
super().__init__()
|
||||
|
||||
if specaug is not None:
|
||||
specaug_class = registry_tables.specaug_classes.get(specaug.lower())
|
||||
specaug_class = tables.specaug_classes.get(specaug.lower())
|
||||
specaug = specaug_class(**specaug_conf)
|
||||
if normalize is not None:
|
||||
normalize_class = registry_tables.normalize_classes.get(normalize.lower())
|
||||
normalize_class = tables.normalize_classes.get(normalize.lower())
|
||||
normalize = normalize_class(**normalize_conf)
|
||||
encoder_class = registry_tables.encoder_classes.get(encoder.lower())
|
||||
encoder_class = tables.encoder_classes.get(encoder.lower())
|
||||
encoder = encoder_class(input_size=input_size, **encoder_conf)
|
||||
encoder_output_size = encoder.output_size()
|
||||
|
||||
if decoder is not None:
|
||||
decoder_class = registry_tables.decoder_classes.get(decoder.lower())
|
||||
decoder_class = tables.decoder_classes.get(decoder.lower())
|
||||
decoder = decoder_class(
|
||||
vocab_size=vocab_size,
|
||||
encoder_output_size=encoder_output_size,
|
||||
@ -104,7 +104,7 @@ class Paraformer(nn.Module):
|
||||
odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf
|
||||
)
|
||||
if predictor is not None:
|
||||
predictor_class = registry_tables.predictor_classes.get(predictor.lower())
|
||||
predictor_class = tables.predictor_classes.get(predictor.lower())
|
||||
predictor = predictor_class(**predictor_conf)
|
||||
|
||||
# note that eos is the same as sos (equivalent ID)
|
||||
|
||||
@ -2,8 +2,8 @@
|
||||
# You can modify the configuration according to your own requirements.
|
||||
|
||||
# to print the register_table:
|
||||
# from funasr.utils.register import registry_tables
|
||||
# registry_tables.print()
|
||||
# from funasr.register import tables
|
||||
# tables.print()
|
||||
|
||||
# network architecture
|
||||
#model: funasr.models.paraformer.model:Paraformer
|
||||
|
||||
@ -44,7 +44,7 @@ from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio,
|
||||
from funasr.utils import postprocess_utils
|
||||
from funasr.utils.datadir_writer import DatadirWriter
|
||||
from funasr.utils.timestamp_tools import ts_prediction_lfr6_standard
|
||||
from funasr.utils.register import registry_tables
|
||||
from funasr.register import tables
|
||||
from funasr.models.ctc.ctc import CTC
|
||||
|
||||
class Paraformer(nn.Module):
|
||||
@ -102,19 +102,19 @@ class Paraformer(nn.Module):
|
||||
# pdb.set_trace()
|
||||
|
||||
if frontend is not None:
|
||||
frontend_class = registry_tables.frontend_classes.get_class(frontend.lower())
|
||||
frontend_class = tables.frontend_classes.get_class(frontend.lower())
|
||||
frontend = frontend_class(**frontend_conf)
|
||||
if specaug is not None:
|
||||
specaug_class = registry_tables.specaug_classes.get_class(specaug.lower())
|
||||
specaug_class = tables.specaug_classes.get_class(specaug.lower())
|
||||
specaug = specaug_class(**specaug_conf)
|
||||
if normalize is not None:
|
||||
normalize_class = registry_tables.normalize_classes.get_class(normalize.lower())
|
||||
normalize_class = tables.normalize_classes.get_class(normalize.lower())
|
||||
normalize = normalize_class(**normalize_conf)
|
||||
encoder_class = registry_tables.encoder_classes.get_class(encoder.lower())
|
||||
encoder_class = tables.encoder_classes.get_class(encoder.lower())
|
||||
encoder = encoder_class(input_size=input_size, **encoder_conf)
|
||||
encoder_output_size = encoder.output_size()
|
||||
if decoder is not None:
|
||||
decoder_class = registry_tables.decoder_classes.get_class(decoder.lower())
|
||||
decoder_class = tables.decoder_classes.get_class(decoder.lower())
|
||||
decoder = decoder_class(
|
||||
vocab_size=vocab_size,
|
||||
encoder_output_size=encoder_output_size,
|
||||
@ -129,7 +129,7 @@ class Paraformer(nn.Module):
|
||||
odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf
|
||||
)
|
||||
if predictor is not None:
|
||||
predictor_class = registry_tables.predictor_classes.get_class(predictor.lower())
|
||||
predictor_class = tables.predictor_classes.get_class(predictor.lower())
|
||||
predictor = predictor_class(**predictor_conf)
|
||||
|
||||
# note that eos is the same as sos (equivalent ID)
|
||||
|
||||
@ -14,7 +14,7 @@ from funasr.models.transformer.layer_norm import LayerNorm
|
||||
from funasr.models.sanm.positionwise_feed_forward import PositionwiseFeedForwardDecoderSANM
|
||||
from funasr.models.transformer.utils.repeat import repeat
|
||||
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
class DecoderLayerSANM(nn.Module):
|
||||
"""Single decoder layer module.
|
||||
@ -190,7 +190,7 @@ class DecoderLayerSANM(nn.Module):
|
||||
return x, memory, fsmn_cache, opt_cache
|
||||
|
||||
|
||||
@register_class("decoder_classes", "ParaformerSANMDecoder")
|
||||
@tables.register("decoder_classes", "ParaformerSANMDecoder")
|
||||
class ParaformerSANMDecoder(BaseTransformerDecoder):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
|
||||
@ -27,7 +27,7 @@ from funasr.models.transformer.positionwise_feed_forward import (
|
||||
from funasr.models.transformer.utils.repeat import repeat
|
||||
from funasr.models.transformer.scorers.scorer_interface import BatchScorerInterface
|
||||
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
class DecoderLayer(nn.Module):
|
||||
"""Single decoder layer module.
|
||||
@ -353,7 +353,7 @@ class BaseTransformerDecoder(nn.Module, BatchScorerInterface):
|
||||
state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)]
|
||||
return logp, state_list
|
||||
|
||||
@register_class("decoder_classes", "TransformerDecoder")
|
||||
@tables.register("decoder_classes", "TransformerDecoder")
|
||||
class TransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
@ -402,7 +402,7 @@ class TransformerDecoder(BaseTransformerDecoder):
|
||||
)
|
||||
|
||||
|
||||
@register_class("decoder_classes", "ParaformerDecoderSAN")
|
||||
@tables.register("decoder_classes", "ParaformerDecoderSAN")
|
||||
class ParaformerDecoderSAN(BaseTransformerDecoder):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
@ -516,7 +516,7 @@ class ParaformerDecoderSAN(BaseTransformerDecoder):
|
||||
else:
|
||||
return x, olens
|
||||
|
||||
@register_class("decoder_classes", "LightweightConvolutionTransformerDecoder")
|
||||
@tables.register("decoder_classes", "LightweightConvolutionTransformerDecoder")
|
||||
class LightweightConvolutionTransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
@ -577,7 +577,7 @@ class LightweightConvolutionTransformerDecoder(BaseTransformerDecoder):
|
||||
),
|
||||
)
|
||||
|
||||
@register_class("decoder_classes", "LightweightConvolution2DTransformerDecoder")
|
||||
@tables.register("decoder_classes", "LightweightConvolution2DTransformerDecoder")
|
||||
class LightweightConvolution2DTransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
@ -639,7 +639,7 @@ class LightweightConvolution2DTransformerDecoder(BaseTransformerDecoder):
|
||||
)
|
||||
|
||||
|
||||
@register_class("decoder_classes", "DynamicConvolutionTransformerDecoder")
|
||||
@tables.register("decoder_classes", "DynamicConvolutionTransformerDecoder")
|
||||
class DynamicConvolutionTransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
@ -700,7 +700,7 @@ class DynamicConvolutionTransformerDecoder(BaseTransformerDecoder):
|
||||
),
|
||||
)
|
||||
|
||||
@register_class("decoder_classes", "DynamicConvolution2DTransformerDecoder")
|
||||
@tables.register("decoder_classes", "DynamicConvolution2DTransformerDecoder")
|
||||
class DynamicConvolution2DTransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
|
||||
@ -14,7 +14,7 @@ from funasr.models.transformer.layer_norm import LayerNorm
|
||||
from funasr.models.sanm.positionwise_feed_forward import PositionwiseFeedForwardDecoderSANM
|
||||
from funasr.models.transformer.utils.repeat import repeat
|
||||
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
class DecoderLayerSANM(nn.Module):
|
||||
"""Single decoder layer module.
|
||||
@ -190,7 +190,7 @@ class DecoderLayerSANM(nn.Module):
|
||||
return x, memory, fsmn_cache, opt_cache
|
||||
|
||||
|
||||
@register_class("decoder_classes", "FsmnDecoder")
|
||||
@tables.register("decoder_classes", "FsmnDecoder")
|
||||
class FsmnDecoder(BaseTransformerDecoder):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
|
||||
@ -30,7 +30,7 @@ from funasr.models.transformer.utils.subsampling import check_short_utt
|
||||
|
||||
from funasr.models.ctc.ctc import CTC
|
||||
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
class EncoderLayerSANM(nn.Module):
|
||||
def __init__(
|
||||
@ -153,7 +153,7 @@ class EncoderLayerSANM(nn.Module):
|
||||
|
||||
return x, cache
|
||||
|
||||
@register_class("encoder_classes", "SANMEncoder")
|
||||
@tables.register("encoder_classes", "SANMEncoder")
|
||||
class SANMEncoder(nn.Module):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
|
||||
@ -3,9 +3,9 @@ import logging
|
||||
import torch
|
||||
|
||||
from funasr.models.transformer.model import Transformer
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("model_classes", "SANM")
|
||||
@tables.register("model_classes", "SANM")
|
||||
class SANM(Transformer):
|
||||
"""CTC-attention hybrid Encoder-Decoder model"""
|
||||
|
||||
|
||||
@ -14,7 +14,7 @@ from funasr.models.transformer.layer_norm import LayerNorm
|
||||
from funasr.models.sanm.positionwise_feed_forward import PositionwiseFeedForwardDecoderSANM
|
||||
from funasr.models.transformer.utils.repeat import repeat
|
||||
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
class DecoderLayerSANM(nn.Module):
|
||||
"""Single decoder layer module.
|
||||
@ -189,7 +189,7 @@ class DecoderLayerSANM(nn.Module):
|
||||
|
||||
return x, memory, fsmn_cache, opt_cache
|
||||
|
||||
@register_class("decoder_classes", "FsmnDecoderSCAMAOpt")
|
||||
@tables.register("decoder_classes", "FsmnDecoderSCAMAOpt")
|
||||
class FsmnDecoderSCAMAOpt(BaseTransformerDecoder):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
|
||||
@ -30,7 +30,7 @@ from funasr.models.transformer.utils.mask import subsequent_mask, vad_mask
|
||||
|
||||
from funasr.models.ctc.ctc import CTC
|
||||
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
class EncoderLayerSANM(nn.Module):
|
||||
def __init__(
|
||||
@ -154,7 +154,7 @@ class EncoderLayerSANM(nn.Module):
|
||||
return x, cache
|
||||
|
||||
|
||||
@register_class("encoder_classes", "SANMEncoderChunkOpt")
|
||||
@tables.register("encoder_classes", "SANMEncoderChunkOpt")
|
||||
class SANMEncoderChunkOpt(nn.Module):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
|
||||
@ -51,10 +51,10 @@ from funasr.utils import postprocess_utils
|
||||
from funasr.utils.datadir_writer import DatadirWriter
|
||||
|
||||
from funasr.models.paraformer.model import Paraformer
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
|
||||
@register_class("model_classes", "SeacoParaformer")
|
||||
@tables.register("model_classes", "SeacoParaformer")
|
||||
class SeacoParaformer(Paraformer):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
@ -100,7 +100,7 @@ class SeacoParaformer(Paraformer):
|
||||
seaco_decoder = kwargs.get("seaco_decoder", None)
|
||||
if seaco_decoder is not None:
|
||||
seaco_decoder_conf = kwargs.get("seaco_decoder_conf")
|
||||
seaco_decoder_class = registry_tables.decoder_classes.get(seaco_decoder.lower())
|
||||
seaco_decoder_class = tables.decoder_classes.get(seaco_decoder.lower())
|
||||
self.seaco_decoder = seaco_decoder_class(
|
||||
vocab_size=self.vocab_size,
|
||||
encoder_output_size=self.inner_dim,
|
||||
|
||||
@ -2,8 +2,8 @@
|
||||
# You can modify the configuration according to your own requirements.
|
||||
|
||||
# to print the register_table:
|
||||
# from funasr.utils.register import registry_tables
|
||||
# registry_tables.print()
|
||||
# from funasr.register import tables
|
||||
# tables.print()
|
||||
|
||||
# network architecture
|
||||
model: SeacoParaformer
|
||||
|
||||
@ -7,11 +7,11 @@ from funasr.models.specaug.mask_along_axis import MaskAlongAxis
|
||||
from funasr.models.specaug.mask_along_axis import MaskAlongAxisVariableMaxWidth
|
||||
from funasr.models.specaug.mask_along_axis import MaskAlongAxisLFR
|
||||
from funasr.models.specaug.time_warp import TimeWarp
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
@register_class("specaug_classes", "SpecAug")
|
||||
@tables.register("specaug_classes", "SpecAug")
|
||||
class SpecAug(nn.Module):
|
||||
"""Implementation of SpecAug.
|
||||
|
||||
@ -101,7 +101,7 @@ class SpecAug(nn.Module):
|
||||
x, x_lengths = self.time_mask(x, x_lengths)
|
||||
return x, x_lengths
|
||||
|
||||
@register_class("specaug_classes", "SpecAugLFR")
|
||||
@tables.register("specaug_classes", "SpecAugLFR")
|
||||
class SpecAugLFR(nn.Module):
|
||||
"""Implementation of SpecAug.
|
||||
lfr_rate:low frame rate
|
||||
|
||||
@ -26,7 +26,7 @@ from funasr.models.transformer.positionwise_feed_forward import (
|
||||
from funasr.models.transformer.utils.repeat import repeat
|
||||
from funasr.models.transformer.scorers.scorer_interface import BatchScorerInterface
|
||||
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
class DecoderLayer(nn.Module):
|
||||
"""Single decoder layer module.
|
||||
@ -352,7 +352,7 @@ class BaseTransformerDecoder(nn.Module, BatchScorerInterface):
|
||||
state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)]
|
||||
return logp, state_list
|
||||
|
||||
@register_class("decoder_classes", "TransformerDecoder")
|
||||
@tables.register("decoder_classes", "TransformerDecoder")
|
||||
class TransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
@ -401,7 +401,7 @@ class TransformerDecoder(BaseTransformerDecoder):
|
||||
)
|
||||
|
||||
|
||||
@register_class("decoder_classes", "LightweightConvolutionTransformerDecoder")
|
||||
@tables.register("decoder_classes", "LightweightConvolutionTransformerDecoder")
|
||||
class LightweightConvolutionTransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
@ -462,7 +462,7 @@ class LightweightConvolutionTransformerDecoder(BaseTransformerDecoder):
|
||||
),
|
||||
)
|
||||
|
||||
@register_class("decoder_classes", "LightweightConvolution2DTransformerDecoder")
|
||||
@tables.register("decoder_classes", "LightweightConvolution2DTransformerDecoder")
|
||||
class LightweightConvolution2DTransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
@ -524,7 +524,7 @@ class LightweightConvolution2DTransformerDecoder(BaseTransformerDecoder):
|
||||
)
|
||||
|
||||
|
||||
@register_class("decoder_classes", "DynamicConvolutionTransformerDecoder")
|
||||
@tables.register("decoder_classes", "DynamicConvolutionTransformerDecoder")
|
||||
class DynamicConvolutionTransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
@ -585,7 +585,7 @@ class DynamicConvolutionTransformerDecoder(BaseTransformerDecoder):
|
||||
),
|
||||
)
|
||||
|
||||
@register_class("decoder_classes", "DynamicConvolution2DTransformerDecoder")
|
||||
@tables.register("decoder_classes", "DynamicConvolution2DTransformerDecoder")
|
||||
class DynamicConvolution2DTransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
|
||||
@ -28,7 +28,7 @@ from funasr.models.transformer.utils.subsampling import Conv2dSubsampling8
|
||||
from funasr.models.transformer.utils.subsampling import TooShortUttError
|
||||
from funasr.models.transformer.utils.subsampling import check_short_utt
|
||||
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
class EncoderLayer(nn.Module):
|
||||
"""Encoder layer module.
|
||||
@ -136,7 +136,7 @@ class EncoderLayer(nn.Module):
|
||||
|
||||
return x, mask
|
||||
|
||||
@register_class("encoder_classes", "TransformerEncoder")
|
||||
@tables.register("encoder_classes", "TransformerEncoder")
|
||||
class TransformerEncoder(nn.Module):
|
||||
"""Transformer encoder module.
|
||||
|
||||
|
||||
@ -15,9 +15,9 @@ from funasr.train_utils.device_funcs import force_gatherable
|
||||
from funasr.datasets.audio_datasets.load_audio_extract_fbank import load_audio, extract_fbank
|
||||
from funasr.utils import postprocess_utils
|
||||
from funasr.utils.datadir_writer import DatadirWriter
|
||||
from funasr.utils.register import register_class, registry_tables
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("model_classes", "Transformer")
|
||||
@tables.register("model_classes", "Transformer")
|
||||
class Transformer(nn.Module):
|
||||
"""CTC-attention hybrid Encoder-Decoder model"""
|
||||
|
||||
@ -60,19 +60,19 @@ class Transformer(nn.Module):
|
||||
super().__init__()
|
||||
|
||||
if frontend is not None:
|
||||
frontend_class = registry_tables.frontend_classes.get_class(frontend.lower())
|
||||
frontend_class = tables.frontend_classes.get_class(frontend.lower())
|
||||
frontend = frontend_class(**frontend_conf)
|
||||
if specaug is not None:
|
||||
specaug_class = registry_tables.specaug_classes.get_class(specaug.lower())
|
||||
specaug_class = tables.specaug_classes.get_class(specaug.lower())
|
||||
specaug = specaug_class(**specaug_conf)
|
||||
if normalize is not None:
|
||||
normalize_class = registry_tables.normalize_classes.get_class(normalize.lower())
|
||||
normalize_class = tables.normalize_classes.get_class(normalize.lower())
|
||||
normalize = normalize_class(**normalize_conf)
|
||||
encoder_class = registry_tables.encoder_classes.get_class(encoder.lower())
|
||||
encoder_class = tables.encoder_classes.get_class(encoder.lower())
|
||||
encoder = encoder_class(input_size=input_size, **encoder_conf)
|
||||
encoder_output_size = encoder.output_size()
|
||||
if decoder is not None:
|
||||
decoder_class = registry_tables.decoder_classes.get_class(decoder.lower())
|
||||
decoder_class = tables.decoder_classes.get_class(decoder.lower())
|
||||
decoder = decoder_class(
|
||||
vocab_size=vocab_size,
|
||||
encoder_output_size=encoder_output_size,
|
||||
|
||||
@ -2,8 +2,8 @@
|
||||
# You can modify the configuration according to your own requirements.
|
||||
|
||||
# to print the register_table:
|
||||
# from funasr.utils.register import registry_tables
|
||||
# registry_tables.print()
|
||||
# from funasr.register import tables
|
||||
# tables.print()
|
||||
|
||||
# network architecture
|
||||
#model: funasr.models.paraformer.model:Paraformer
|
||||
|
||||
77
funasr/register.py
Normal file
77
funasr/register.py
Normal file
@ -0,0 +1,77 @@
|
||||
import logging
|
||||
import inspect
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
@dataclass
|
||||
class RegisterTables:
|
||||
model_classes = {}
|
||||
frontend_classes = {}
|
||||
specaug_classes = {}
|
||||
normalize_classes = {}
|
||||
encoder_classes = {}
|
||||
decoder_classes = {}
|
||||
joint_network_classes = {}
|
||||
predictor_classes = {}
|
||||
stride_conv_classes = {}
|
||||
tokenizer_classes = {}
|
||||
batch_sampler_classes = {}
|
||||
dataset_classes = {}
|
||||
index_ds_classes = {}
|
||||
|
||||
def print(self,):
|
||||
print("\ntables: \n")
|
||||
fields = vars(self)
|
||||
for classes_key, classes_dict in fields.items():
|
||||
print(f"----------- ** {classes_key.replace('_meta', '')} ** --------------")
|
||||
|
||||
if classes_key.endswith("_meta"):
|
||||
headers = ["class name", "register name", "class location"]
|
||||
metas = []
|
||||
for register_key, meta in classes_dict.items():
|
||||
metas.append(meta)
|
||||
metas.sort(key=lambda x: x[0])
|
||||
data = [headers] + metas
|
||||
col_widths = [max(len(str(item)) for item in col) for col in zip(*data)]
|
||||
|
||||
for row in data:
|
||||
print("| " + " | ".join(str(item).ljust(width) for item, width in zip(row, col_widths)) + " |")
|
||||
print("\n")
|
||||
|
||||
|
||||
def register(self, register_tables_key: str, key=None):
|
||||
def decorator(target_class):
|
||||
|
||||
if not hasattr(self, register_tables_key):
|
||||
setattr(self, register_tables_key, {})
|
||||
logging.info("new registry table has been added: {}".format(register_tables_key))
|
||||
|
||||
registry = getattr(self, register_tables_key)
|
||||
registry_key = key if key is not None else target_class.__name__
|
||||
registry_key = registry_key.lower()
|
||||
# import pdb; pdb.set_trace()
|
||||
assert not registry_key in registry, "(key: {} / class: {}) has been registered already,in {}".format(
|
||||
registry_key, target_class, register_tables_key)
|
||||
|
||||
registry[registry_key] = target_class
|
||||
|
||||
# meta, headers = ["class name", "register name", "class location"]
|
||||
register_tables_key_meta = register_tables_key + "_meta"
|
||||
if not hasattr(self, register_tables_key_meta):
|
||||
setattr(self, register_tables_key_meta, {})
|
||||
registry_meta = getattr(self, register_tables_key_meta)
|
||||
class_file = inspect.getfile(target_class)
|
||||
class_line = inspect.getsourcelines(target_class)[1]
|
||||
meata_data = [f"{target_class.__name__}", f"{registry_key}", f"{class_file}:{class_line}"]
|
||||
registry_meta[registry_key] = meata_data
|
||||
# print(f"Registering class: {class_file}:{class_line} - {target_class.__name__} as {registry_key}")
|
||||
return target_class
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
tables = RegisterTables()
|
||||
|
||||
|
||||
import funasr
|
||||
|
||||
@ -5,9 +5,9 @@ from typing import Union
|
||||
import warnings
|
||||
|
||||
from funasr.tokenizer.abs_tokenizer import BaseTokenizer
|
||||
from funasr.utils.register import register_class
|
||||
from funasr.register import tables
|
||||
|
||||
@register_class("tokenizer_classes", "CharTokenizer")
|
||||
@tables.register("tokenizer_classes", "CharTokenizer")
|
||||
class CharTokenizer(BaseTokenizer):
|
||||
def __init__(
|
||||
self,
|
||||
|
||||
@ -1,72 +0,0 @@
|
||||
import logging
|
||||
import inspect
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
@dataclass
|
||||
class ClassRegistryTables:
|
||||
model_classes = {}
|
||||
frontend_classes = {}
|
||||
specaug_classes = {}
|
||||
normalize_classes = {}
|
||||
encoder_classes = {}
|
||||
decoder_classes = {}
|
||||
joint_network_classes = {}
|
||||
predictor_classes = {}
|
||||
stride_conv_classes = {}
|
||||
tokenizer_classes = {}
|
||||
batch_sampler_classes = {}
|
||||
dataset_classes = {}
|
||||
index_ds_classes = {}
|
||||
|
||||
def print(self,):
|
||||
print("\nregister_tables: \n")
|
||||
fields = vars(self)
|
||||
for classes_key, classes_dict in fields.items():
|
||||
print(f"----------- ** {classes_key.replace('_meta', '')} ** --------------")
|
||||
|
||||
if classes_key.endswith("_meta"):
|
||||
headers = ["class name", "register name", "class location"]
|
||||
metas = []
|
||||
for register_key, meta in classes_dict.items():
|
||||
metas.append(meta)
|
||||
metas.sort(key=lambda x: x[0])
|
||||
data = [headers] + metas
|
||||
col_widths = [max(len(str(item)) for item in col) for col in zip(*data)]
|
||||
|
||||
for row in data:
|
||||
print("| " + " | ".join(str(item).ljust(width) for item, width in zip(row, col_widths)) + " |")
|
||||
print("\n")
|
||||
|
||||
registry_tables = ClassRegistryTables()
|
||||
|
||||
def register_class(registry_tables_key:str, key=None):
|
||||
def decorator(target_class):
|
||||
|
||||
if not hasattr(registry_tables, registry_tables_key):
|
||||
setattr(registry_tables, registry_tables_key, {})
|
||||
logging.info("new registry table has been added: {}".format(registry_tables_key))
|
||||
|
||||
registry = getattr(registry_tables, registry_tables_key)
|
||||
registry_key = key if key is not None else target_class.__name__
|
||||
registry_key = registry_key.lower()
|
||||
# import pdb; pdb.set_trace()
|
||||
assert not registry_key in registry, "(key: {} / class: {}) has been registered already,in {}".format(registry_key, target_class, registry_tables_key)
|
||||
|
||||
registry[registry_key] = target_class
|
||||
|
||||
# meta, headers = ["class name", "register name", "class location"]
|
||||
registry_tables_key_meta = registry_tables_key + "_meta"
|
||||
if not hasattr(registry_tables, registry_tables_key_meta):
|
||||
setattr(registry_tables, registry_tables_key_meta, {})
|
||||
registry_meta = getattr(registry_tables, registry_tables_key_meta)
|
||||
class_file = inspect.getfile(target_class)
|
||||
class_line = inspect.getsourcelines(target_class)[1]
|
||||
meata_data = [f"{target_class.__name__}", f"{registry_key}", f"{class_file}:{class_line}"]
|
||||
registry_meta[registry_key] = meata_data
|
||||
# print(f"Registering class: {class_file}:{class_line} - {target_class.__name__} as {registry_key}")
|
||||
return target_class
|
||||
return decorator
|
||||
|
||||
import funasr
|
||||
|
||||
Loading…
Reference in New Issue
Block a user